Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poldmj1N Structured version   Visualization version   Unicode version

Theorem poldmj1N 35214
Description: De Morgan's law for polarity of projective sum. (oldmj1 34508 analog.) (Contributed by NM, 7-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddun.a  |-  A  =  ( Atoms `  K )
paddun.p  |-  .+  =  ( +P `  K
)
paddun.o  |-  ._|_  =  ( _|_P `  K
)
Assertion
Ref Expression
poldmj1N  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  ( S  .+  T ) )  =  ( (  ._|_  `  S
)  i^i  (  ._|_  `  T ) ) )

Proof of Theorem poldmj1N
StepHypRef Expression
1 paddun.a . . 3  |-  A  =  ( Atoms `  K )
2 paddun.p . . 3  |-  .+  =  ( +P `  K
)
3 paddun.o . . 3  |-  ._|_  =  ( _|_P `  K
)
41, 2, 3paddunN 35213 . 2  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  ( S  .+  T ) )  =  (  ._|_  `  ( S  u.  T ) ) )
5 simp1 1061 . . 3  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  K  e.  HL )
6 unss 3787 . . . . 5  |-  ( ( S  C_  A  /\  T  C_  A )  <->  ( S  u.  T )  C_  A
)
76biimpi 206 . . . 4  |-  ( ( S  C_  A  /\  T  C_  A )  -> 
( S  u.  T
)  C_  A )
873adant1 1079 . . 3  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  ( S  u.  T )  C_  A )
9 eqid 2622 . . . 4  |-  ( lub `  K )  =  ( lub `  K )
10 eqid 2622 . . . 4  |-  ( oc
`  K )  =  ( oc `  K
)
11 eqid 2622 . . . 4  |-  ( pmap `  K )  =  (
pmap `  K )
129, 10, 1, 11, 3polval2N 35192 . . 3  |-  ( ( K  e.  HL  /\  ( S  u.  T
)  C_  A )  ->  (  ._|_  `  ( S  u.  T ) )  =  ( ( pmap `  K ) `  (
( oc `  K
) `  ( ( lub `  K ) `  ( S  u.  T
) ) ) ) )
135, 8, 12syl2anc 693 . 2  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  ( S  u.  T ) )  =  ( ( pmap `  K
) `  ( ( oc `  K ) `  ( ( lub `  K
) `  ( S  u.  T ) ) ) ) )
14 hlop 34649 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OP )
15143ad2ant1 1082 . . . . 5  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  K  e.  OP )
16 hlclat 34645 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  CLat )
17163ad2ant1 1082 . . . . . 6  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  K  e.  CLat )
18 simp2 1062 . . . . . . 7  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  S  C_  A )
19 eqid 2622 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
2019, 1atssbase 34577 . . . . . . 7  |-  A  C_  ( Base `  K )
2118, 20syl6ss 3615 . . . . . 6  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  S  C_  ( Base `  K
) )
2219, 9clatlubcl 17112 . . . . . 6  |-  ( ( K  e.  CLat  /\  S  C_  ( Base `  K
) )  ->  (
( lub `  K
) `  S )  e.  ( Base `  K
) )
2317, 21, 22syl2anc 693 . . . . 5  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( lub `  K
) `  S )  e.  ( Base `  K
) )
2419, 10opoccl 34481 . . . . 5  |-  ( ( K  e.  OP  /\  ( ( lub `  K
) `  S )  e.  ( Base `  K
) )  ->  (
( oc `  K
) `  ( ( lub `  K ) `  S ) )  e.  ( Base `  K
) )
2515, 23, 24syl2anc 693 . . . 4  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( oc `  K
) `  ( ( lub `  K ) `  S ) )  e.  ( Base `  K
) )
26 simp3 1063 . . . . . . 7  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  T  C_  A )
2726, 20syl6ss 3615 . . . . . 6  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  T  C_  ( Base `  K
) )
2819, 9clatlubcl 17112 . . . . . 6  |-  ( ( K  e.  CLat  /\  T  C_  ( Base `  K
) )  ->  (
( lub `  K
) `  T )  e.  ( Base `  K
) )
2917, 27, 28syl2anc 693 . . . . 5  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( lub `  K
) `  T )  e.  ( Base `  K
) )
3019, 10opoccl 34481 . . . . 5  |-  ( ( K  e.  OP  /\  ( ( lub `  K
) `  T )  e.  ( Base `  K
) )  ->  (
( oc `  K
) `  ( ( lub `  K ) `  T ) )  e.  ( Base `  K
) )
3115, 29, 30syl2anc 693 . . . 4  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( oc `  K
) `  ( ( lub `  K ) `  T ) )  e.  ( Base `  K
) )
32 eqid 2622 . . . . 5  |-  ( meet `  K )  =  (
meet `  K )
3319, 32, 1, 11pmapmeet 35059 . . . 4  |-  ( ( K  e.  HL  /\  ( ( oc `  K ) `  (
( lub `  K
) `  S )
)  e.  ( Base `  K )  /\  (
( oc `  K
) `  ( ( lub `  K ) `  T ) )  e.  ( Base `  K
) )  ->  (
( pmap `  K ) `  ( ( ( oc
`  K ) `  ( ( lub `  K
) `  S )
) ( meet `  K
) ( ( oc
`  K ) `  ( ( lub `  K
) `  T )
) ) )  =  ( ( ( pmap `  K ) `  (
( oc `  K
) `  ( ( lub `  K ) `  S ) ) )  i^i  ( ( pmap `  K ) `  (
( oc `  K
) `  ( ( lub `  K ) `  T ) ) ) ) )
345, 25, 31, 33syl3anc 1326 . . 3  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( pmap `  K ) `  ( ( ( oc
`  K ) `  ( ( lub `  K
) `  S )
) ( meet `  K
) ( ( oc
`  K ) `  ( ( lub `  K
) `  T )
) ) )  =  ( ( ( pmap `  K ) `  (
( oc `  K
) `  ( ( lub `  K ) `  S ) ) )  i^i  ( ( pmap `  K ) `  (
( oc `  K
) `  ( ( lub `  K ) `  T ) ) ) ) )
35 eqid 2622 . . . . . . . 8  |-  ( join `  K )  =  (
join `  K )
3619, 35, 9lubun 17123 . . . . . . 7  |-  ( ( K  e.  CLat  /\  S  C_  ( Base `  K
)  /\  T  C_  ( Base `  K ) )  ->  ( ( lub `  K ) `  ( S  u.  T )
)  =  ( ( ( lub `  K
) `  S )
( join `  K )
( ( lub `  K
) `  T )
) )
3717, 21, 27, 36syl3anc 1326 . . . . . 6  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( lub `  K
) `  ( S  u.  T ) )  =  ( ( ( lub `  K ) `  S
) ( join `  K
) ( ( lub `  K ) `  T
) ) )
3837fveq2d 6195 . . . . 5  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( oc `  K
) `  ( ( lub `  K ) `  ( S  u.  T
) ) )  =  ( ( oc `  K ) `  (
( ( lub `  K
) `  S )
( join `  K )
( ( lub `  K
) `  T )
) ) )
39 hlol 34648 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OL )
40393ad2ant1 1082 . . . . . 6  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  K  e.  OL )
4119, 35, 32, 10oldmj1 34508 . . . . . 6  |-  ( ( K  e.  OL  /\  ( ( lub `  K
) `  S )  e.  ( Base `  K
)  /\  ( ( lub `  K ) `  T )  e.  (
Base `  K )
)  ->  ( ( oc `  K ) `  ( ( ( lub `  K ) `  S
) ( join `  K
) ( ( lub `  K ) `  T
) ) )  =  ( ( ( oc
`  K ) `  ( ( lub `  K
) `  S )
) ( meet `  K
) ( ( oc
`  K ) `  ( ( lub `  K
) `  T )
) ) )
4240, 23, 29, 41syl3anc 1326 . . . . 5  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( oc `  K
) `  ( (
( lub `  K
) `  S )
( join `  K )
( ( lub `  K
) `  T )
) )  =  ( ( ( oc `  K ) `  (
( lub `  K
) `  S )
) ( meet `  K
) ( ( oc
`  K ) `  ( ( lub `  K
) `  T )
) ) )
4338, 42eqtrd 2656 . . . 4  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( oc `  K
) `  ( ( lub `  K ) `  ( S  u.  T
) ) )  =  ( ( ( oc
`  K ) `  ( ( lub `  K
) `  S )
) ( meet `  K
) ( ( oc
`  K ) `  ( ( lub `  K
) `  T )
) ) )
4443fveq2d 6195 . . 3  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( pmap `  K ) `  ( ( oc `  K ) `  (
( lub `  K
) `  ( S  u.  T ) ) ) )  =  ( (
pmap `  K ) `  ( ( ( oc
`  K ) `  ( ( lub `  K
) `  S )
) ( meet `  K
) ( ( oc
`  K ) `  ( ( lub `  K
) `  T )
) ) ) )
459, 10, 1, 11, 3polval2N 35192 . . . . 5  |-  ( ( K  e.  HL  /\  S  C_  A )  -> 
(  ._|_  `  S )  =  ( ( pmap `  K ) `  (
( oc `  K
) `  ( ( lub `  K ) `  S ) ) ) )
46453adant3 1081 . . . 4  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  S )  =  ( ( pmap `  K
) `  ( ( oc `  K ) `  ( ( lub `  K
) `  S )
) ) )
479, 10, 1, 11, 3polval2N 35192 . . . . 5  |-  ( ( K  e.  HL  /\  T  C_  A )  -> 
(  ._|_  `  T )  =  ( ( pmap `  K ) `  (
( oc `  K
) `  ( ( lub `  K ) `  T ) ) ) )
48473adant2 1080 . . . 4  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  T )  =  ( ( pmap `  K
) `  ( ( oc `  K ) `  ( ( lub `  K
) `  T )
) ) )
4946, 48ineq12d 3815 . . 3  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
(  ._|_  `  S )  i^i  (  ._|_  `  T
) )  =  ( ( ( pmap `  K
) `  ( ( oc `  K ) `  ( ( lub `  K
) `  S )
) )  i^i  (
( pmap `  K ) `  ( ( oc `  K ) `  (
( lub `  K
) `  T )
) ) ) )
5034, 44, 493eqtr4d 2666 . 2  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (
( pmap `  K ) `  ( ( oc `  K ) `  (
( lub `  K
) `  ( S  u.  T ) ) ) )  =  ( ( 
._|_  `  S )  i^i  (  ._|_  `  T ) ) )
514, 13, 503eqtrd 2660 1  |-  ( ( K  e.  HL  /\  S  C_  A  /\  T  C_  A )  ->  (  ._|_  `  ( S  .+  T ) )  =  ( (  ._|_  `  S
)  i^i  (  ._|_  `  T ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    u. cun 3572    i^i cin 3573    C_ wss 3574   ` cfv 5888  (class class class)co 6650   Basecbs 15857   occoc 15949   lubclub 16942   joincjn 16944   meetcmee 16945   CLatccla 17107   OPcops 34459   OLcol 34461   Atomscatm 34550   HLchlt 34637   pmapcpmap 34783   +Pcpadd 35081   _|_PcpolN 35188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-polarityN 35189
This theorem is referenced by:  pmapj2N  35215  osumcllem3N  35244  pexmidN  35255
  Copyright terms: Public domain W3C validator