MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolficcss Structured version   Visualization version   Unicode version

Theorem ovolficcss 23238
Description: Any (closed) interval covering is a subset of the reals. (Contributed by Mario Carneiro, 24-Mar-2015.)
Assertion
Ref Expression
ovolficcss  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  U. ran  ( [,]  o.  F ) 
C_  RR )

Proof of Theorem ovolficcss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnco2 5642 . . 3  |-  ran  ( [,]  o.  F )  =  ( [,] " ran  F )
2 inss2 3834 . . . . . . . . . . . 12  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
3 ffvelrn 6357 . . . . . . . . . . . 12  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( F `  y )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
42, 3sseldi 3601 . . . . . . . . . . 11  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( F `  y )  e.  ( RR  X.  RR ) )
5 1st2nd2 7205 . . . . . . . . . . 11  |-  ( ( F `  y )  e.  ( RR  X.  RR )  ->  ( F `
 y )  = 
<. ( 1st `  ( F `  y )
) ,  ( 2nd `  ( F `  y
) ) >. )
64, 5syl 17 . . . . . . . . . 10  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( F `  y )  =  <. ( 1st `  ( F `  y )
) ,  ( 2nd `  ( F `  y
) ) >. )
76fveq2d 6195 . . . . . . . . 9  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( [,] `  ( F `  y ) )  =  ( [,] `  <. ( 1st `  ( F `
 y ) ) ,  ( 2nd `  ( F `  y )
) >. ) )
8 df-ov 6653 . . . . . . . . 9  |-  ( ( 1st `  ( F `
 y ) ) [,] ( 2nd `  ( F `  y )
) )  =  ( [,] `  <. ( 1st `  ( F `  y ) ) ,  ( 2nd `  ( F `  y )
) >. )
97, 8syl6eqr 2674 . . . . . . . 8  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( [,] `  ( F `  y ) )  =  ( ( 1st `  ( F `  y )
) [,] ( 2nd `  ( F `  y
) ) ) )
10 xp1st 7198 . . . . . . . . . 10  |-  ( ( F `  y )  e.  ( RR  X.  RR )  ->  ( 1st `  ( F `  y
) )  e.  RR )
114, 10syl 17 . . . . . . . . 9  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( 1st `  ( F `  y ) )  e.  RR )
12 xp2nd 7199 . . . . . . . . . 10  |-  ( ( F `  y )  e.  ( RR  X.  RR )  ->  ( 2nd `  ( F `  y
) )  e.  RR )
134, 12syl 17 . . . . . . . . 9  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( 2nd `  ( F `  y ) )  e.  RR )
14 iccssre 12255 . . . . . . . . 9  |-  ( ( ( 1st `  ( F `  y )
)  e.  RR  /\  ( 2nd `  ( F `
 y ) )  e.  RR )  -> 
( ( 1st `  ( F `  y )
) [,] ( 2nd `  ( F `  y
) ) )  C_  RR )
1511, 13, 14syl2anc 693 . . . . . . . 8  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  (
( 1st `  ( F `  y )
) [,] ( 2nd `  ( F `  y
) ) )  C_  RR )
169, 15eqsstrd 3639 . . . . . . 7  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( [,] `  ( F `  y ) )  C_  RR )
17 reex 10027 . . . . . . . 8  |-  RR  e.  _V
1817elpw2 4828 . . . . . . 7  |-  ( ( [,] `  ( F `
 y ) )  e.  ~P RR  <->  ( [,] `  ( F `  y
) )  C_  RR )
1916, 18sylibr 224 . . . . . 6  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  y  e.  NN )  ->  ( [,] `  ( F `  y ) )  e. 
~P RR )
2019ralrimiva 2966 . . . . 5  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  A. y  e.  NN  ( [,] `  ( F `  y )
)  e.  ~P RR )
21 ffn 6045 . . . . . 6  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  F  Fn  NN )
22 fveq2 6191 . . . . . . . 8  |-  ( x  =  ( F `  y )  ->  ( [,] `  x )  =  ( [,] `  ( F `  y )
) )
2322eleq1d 2686 . . . . . . 7  |-  ( x  =  ( F `  y )  ->  (
( [,] `  x
)  e.  ~P RR  <->  ( [,] `  ( F `
 y ) )  e.  ~P RR ) )
2423ralrn 6362 . . . . . 6  |-  ( F  Fn  NN  ->  ( A. x  e.  ran  F ( [,] `  x
)  e.  ~P RR  <->  A. y  e.  NN  ( [,] `  ( F `  y ) )  e. 
~P RR ) )
2521, 24syl 17 . . . . 5  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  ( A. x  e.  ran  F ( [,] `  x
)  e.  ~P RR  <->  A. y  e.  NN  ( [,] `  ( F `  y ) )  e. 
~P RR ) )
2620, 25mpbird 247 . . . 4  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  A. x  e.  ran  F ( [,] `  x )  e.  ~P RR )
27 iccf 12272 . . . . . 6  |-  [,] :
( RR*  X.  RR* ) --> ~P RR*
28 ffun 6048 . . . . . 6  |-  ( [,]
: ( RR*  X.  RR* )
--> ~P RR*  ->  Fun  [,] )
2927, 28ax-mp 5 . . . . 5  |-  Fun  [,]
30 frn 6053 . . . . . 6  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  ran  F 
C_  (  <_  i^i  ( RR  X.  RR ) ) )
31 rexpssxrxp 10084 . . . . . . . 8  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
322, 31sstri 3612 . . . . . . 7  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
3327fdmi 6052 . . . . . . 7  |-  dom  [,]  =  ( RR*  X.  RR* )
3432, 33sseqtr4i 3638 . . . . . 6  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  dom  [,]
3530, 34syl6ss 3615 . . . . 5  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  ran  F 
C_  dom  [,] )
36 funimass4 6247 . . . . 5  |-  ( ( Fun  [,]  /\  ran  F  C_ 
dom  [,] )  ->  (
( [,] " ran  F )  C_  ~P RR  <->  A. x  e.  ran  F
( [,] `  x
)  e.  ~P RR ) )
3729, 35, 36sylancr 695 . . . 4  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( [,] " ran  F )  C_  ~P RR  <->  A. x  e.  ran  F
( [,] `  x
)  e.  ~P RR ) )
3826, 37mpbird 247 . . 3  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  ( [,] " ran  F ) 
C_  ~P RR )
391, 38syl5eqss 3649 . 2  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  ran  ( [,]  o.  F ) 
C_  ~P RR )
40 sspwuni 4611 . 2  |-  ( ran  ( [,]  o.  F
)  C_  ~P RR  <->  U.
ran  ( [,]  o.  F )  C_  RR )
4139, 40sylib 208 1  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  U. ran  ( [,]  o.  F ) 
C_  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   <.cop 4183   U.cuni 4436    X. cxp 5112   dom cdm 5114   ran crn 5115   "cima 5117    o. ccom 5118   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   RRcr 9935   RR*cxr 10073    <_ cle 10075   NNcn 11020   [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-icc 12182
This theorem is referenced by:  ovollb2lem  23256  ovollb2  23257  uniiccdif  23346  uniiccvol  23348  uniioombllem3  23353  uniioombllem4  23354  uniioombllem5  23355  uniiccmbl  23358
  Copyright terms: Public domain W3C validator