MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovollb2 Structured version   Visualization version   Unicode version

Theorem ovollb2 23257
Description: It is often more convenient to do calculations with *closed* coverings rather than open ones; here we show that it makes no difference (compare ovollb 23247). (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypothesis
Ref Expression
ovollb2.1  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
Assertion
Ref Expression
ovollb2  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( [,]  o.  F ) )  -> 
( vol* `  A )  <_  sup ( ran  S ,  RR* ,  <  ) )

Proof of Theorem ovollb2
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . . 7  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( [,]  o.  F ) )  ->  A  C_  U. ran  ( [,]  o.  F ) )
2 ovolficcss 23238 . . . . . . . 8  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  U. ran  ( [,]  o.  F ) 
C_  RR )
32adantr 481 . . . . . . 7  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( [,]  o.  F ) )  ->  U. ran  ( [,]  o.  F )  C_  RR )
41, 3sstrd 3613 . . . . . 6  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( [,]  o.  F ) )  ->  A  C_  RR )
5 ovolcl 23246 . . . . . 6  |-  ( A 
C_  RR  ->  ( vol* `  A )  e.  RR* )
64, 5syl 17 . . . . 5  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( [,]  o.  F ) )  -> 
( vol* `  A )  e.  RR* )
76adantr 481 . . . 4  |-  ( ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_  U. ran  ( [,]  o.  F ) )  /\  sup ( ran 
S ,  RR* ,  <  )  = +oo )  -> 
( vol* `  A )  e.  RR* )
8 pnfge 11964 . . . 4  |-  ( ( vol* `  A
)  e.  RR*  ->  ( vol* `  A
)  <_ +oo )
97, 8syl 17 . . 3  |-  ( ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_  U. ran  ( [,]  o.  F ) )  /\  sup ( ran 
S ,  RR* ,  <  )  = +oo )  -> 
( vol* `  A )  <_ +oo )
10 simpr 477 . . 3  |-  ( ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_  U. ran  ( [,]  o.  F ) )  /\  sup ( ran 
S ,  RR* ,  <  )  = +oo )  ->  sup ( ran  S ,  RR* ,  <  )  = +oo )
119, 10breqtrrd 4681 . 2  |-  ( ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_  U. ran  ( [,]  o.  F ) )  /\  sup ( ran 
S ,  RR* ,  <  )  = +oo )  -> 
( vol* `  A )  <_  sup ( ran  S ,  RR* ,  <  ) )
12 eqid 2622 . . . . . . . . 9  |-  ( ( abs  o.  -  )  o.  F )  =  ( ( abs  o.  -  )  o.  F )
13 ovollb2.1 . . . . . . . . 9  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
1412, 13ovolsf 23241 . . . . . . . 8  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  S : NN --> ( 0 [,) +oo ) )
1514adantr 481 . . . . . . 7  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( [,]  o.  F ) )  ->  S : NN --> ( 0 [,) +oo ) )
16 frn 6053 . . . . . . 7  |-  ( S : NN --> ( 0 [,) +oo )  ->  ran  S  C_  ( 0 [,) +oo ) )
1715, 16syl 17 . . . . . 6  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( [,]  o.  F ) )  ->  ran  S  C_  ( 0 [,) +oo ) )
18 rge0ssre 12280 . . . . . 6  |-  ( 0 [,) +oo )  C_  RR
1917, 18syl6ss 3615 . . . . 5  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( [,]  o.  F ) )  ->  ran  S  C_  RR )
20 1nn 11031 . . . . . . . 8  |-  1  e.  NN
21 fdm 6051 . . . . . . . . 9  |-  ( S : NN --> ( 0 [,) +oo )  ->  dom  S  =  NN )
2215, 21syl 17 . . . . . . . 8  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( [,]  o.  F ) )  ->  dom  S  =  NN )
2320, 22syl5eleqr 2708 . . . . . . 7  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( [,]  o.  F ) )  -> 
1  e.  dom  S
)
24 ne0i 3921 . . . . . . 7  |-  ( 1  e.  dom  S  ->  dom  S  =/=  (/) )
2523, 24syl 17 . . . . . 6  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( [,]  o.  F ) )  ->  dom  S  =/=  (/) )
26 dm0rn0 5342 . . . . . . 7  |-  ( dom 
S  =  (/)  <->  ran  S  =  (/) )
2726necon3bii 2846 . . . . . 6  |-  ( dom 
S  =/=  (/)  <->  ran  S  =/=  (/) )
2825, 27sylib 208 . . . . 5  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( [,]  o.  F ) )  ->  ran  S  =/=  (/) )
29 supxrre2 12161 . . . . 5  |-  ( ( ran  S  C_  RR  /\ 
ran  S  =/=  (/) )  -> 
( sup ( ran 
S ,  RR* ,  <  )  e.  RR  <->  sup ( ran  S ,  RR* ,  <  )  =/= +oo ) )
3019, 28, 29syl2anc 693 . . . 4  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( [,]  o.  F ) )  -> 
( sup ( ran 
S ,  RR* ,  <  )  e.  RR  <->  sup ( ran  S ,  RR* ,  <  )  =/= +oo ) )
3130biimpar 502 . . 3  |-  ( ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_  U. ran  ( [,]  o.  F ) )  /\  sup ( ran 
S ,  RR* ,  <  )  =/= +oo )  ->  sup ( ran  S ,  RR* ,  <  )  e.  RR )
32 fveq2 6191 . . . . . . . . . 10  |-  ( m  =  n  ->  ( F `  m )  =  ( F `  n ) )
3332fveq2d 6195 . . . . . . . . 9  |-  ( m  =  n  ->  ( 1st `  ( F `  m ) )  =  ( 1st `  ( F `  n )
) )
34 oveq2 6658 . . . . . . . . . 10  |-  ( m  =  n  ->  (
2 ^ m )  =  ( 2 ^ n ) )
3534oveq2d 6666 . . . . . . . . 9  |-  ( m  =  n  ->  (
( x  /  2
)  /  ( 2 ^ m ) )  =  ( ( x  /  2 )  / 
( 2 ^ n
) ) )
3633, 35oveq12d 6668 . . . . . . . 8  |-  ( m  =  n  ->  (
( 1st `  ( F `  m )
)  -  ( ( x  /  2 )  /  ( 2 ^ m ) ) )  =  ( ( 1st `  ( F `  n
) )  -  (
( x  /  2
)  /  ( 2 ^ n ) ) ) )
3732fveq2d 6195 . . . . . . . . 9  |-  ( m  =  n  ->  ( 2nd `  ( F `  m ) )  =  ( 2nd `  ( F `  n )
) )
3837, 35oveq12d 6668 . . . . . . . 8  |-  ( m  =  n  ->  (
( 2nd `  ( F `  m )
)  +  ( ( x  /  2 )  /  ( 2 ^ m ) ) )  =  ( ( 2nd `  ( F `  n
) )  +  ( ( x  /  2
)  /  ( 2 ^ n ) ) ) )
3936, 38opeq12d 4410 . . . . . . 7  |-  ( m  =  n  ->  <. (
( 1st `  ( F `  m )
)  -  ( ( x  /  2 )  /  ( 2 ^ m ) ) ) ,  ( ( 2nd `  ( F `  m
) )  +  ( ( x  /  2
)  /  ( 2 ^ m ) ) ) >.  =  <. ( ( 1st `  ( F `  n )
)  -  ( ( x  /  2 )  /  ( 2 ^ n ) ) ) ,  ( ( 2nd `  ( F `  n
) )  +  ( ( x  /  2
)  /  ( 2 ^ n ) ) ) >. )
4039cbvmptv 4750 . . . . . 6  |-  ( m  e.  NN  |->  <. (
( 1st `  ( F `  m )
)  -  ( ( x  /  2 )  /  ( 2 ^ m ) ) ) ,  ( ( 2nd `  ( F `  m
) )  +  ( ( x  /  2
)  /  ( 2 ^ m ) ) ) >. )  =  ( n  e.  NN  |->  <.
( ( 1st `  ( F `  n )
)  -  ( ( x  /  2 )  /  ( 2 ^ n ) ) ) ,  ( ( 2nd `  ( F `  n
) )  +  ( ( x  /  2
)  /  ( 2 ^ n ) ) ) >. )
41 eqid 2622 . . . . . 6  |-  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( m  e.  NN  |->  <. ( ( 1st `  ( F `  m
) )  -  (
( x  /  2
)  /  ( 2 ^ m ) ) ) ,  ( ( 2nd `  ( F `
 m ) )  +  ( ( x  /  2 )  / 
( 2 ^ m
) ) ) >.
) ) )  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( m  e.  NN  |->  <. ( ( 1st `  ( F `  m )
)  -  ( ( x  /  2 )  /  ( 2 ^ m ) ) ) ,  ( ( 2nd `  ( F `  m
) )  +  ( ( x  /  2
)  /  ( 2 ^ m ) ) ) >. ) ) )
42 simplll 798 . . . . . 6  |-  ( ( ( ( F : NN
--> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_  U. ran  ( [,]  o.  F ) )  /\  sup ( ran  S ,  RR* ,  <  )  e.  RR )  /\  x  e.  RR+ )  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
43 simpllr 799 . . . . . 6  |-  ( ( ( ( F : NN
--> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_  U. ran  ( [,]  o.  F ) )  /\  sup ( ran  S ,  RR* ,  <  )  e.  RR )  /\  x  e.  RR+ )  ->  A  C_  U. ran  ( [,]  o.  F ) )
44 simpr 477 . . . . . 6  |-  ( ( ( ( F : NN
--> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_  U. ran  ( [,]  o.  F ) )  /\  sup ( ran  S ,  RR* ,  <  )  e.  RR )  /\  x  e.  RR+ )  ->  x  e.  RR+ )
45 simplr 792 . . . . . 6  |-  ( ( ( ( F : NN
--> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_  U. ran  ( [,]  o.  F ) )  /\  sup ( ran  S ,  RR* ,  <  )  e.  RR )  /\  x  e.  RR+ )  ->  sup ( ran  S ,  RR* ,  <  )  e.  RR )
4613, 40, 41, 42, 43, 44, 45ovollb2lem 23256 . . . . 5  |-  ( ( ( ( F : NN
--> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_  U. ran  ( [,]  o.  F ) )  /\  sup ( ran  S ,  RR* ,  <  )  e.  RR )  /\  x  e.  RR+ )  -> 
( vol* `  A )  <_  ( sup ( ran  S ,  RR* ,  <  )  +  x ) )
4746ralrimiva 2966 . . . 4  |-  ( ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_  U. ran  ( [,]  o.  F ) )  /\  sup ( ran 
S ,  RR* ,  <  )  e.  RR )  ->  A. x  e.  RR+  ( vol* `  A )  <_  ( sup ( ran  S ,  RR* ,  <  )  +  x ) )
48 xralrple 12036 . . . . 5  |-  ( ( ( vol* `  A )  e.  RR*  /\ 
sup ( ran  S ,  RR* ,  <  )  e.  RR )  ->  (
( vol* `  A )  <_  sup ( ran  S ,  RR* ,  <  )  <->  A. x  e.  RR+  ( vol* `  A )  <_  ( sup ( ran  S ,  RR* ,  <  )  +  x ) ) )
496, 48sylan 488 . . . 4  |-  ( ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_  U. ran  ( [,]  o.  F ) )  /\  sup ( ran 
S ,  RR* ,  <  )  e.  RR )  -> 
( ( vol* `  A )  <_  sup ( ran  S ,  RR* ,  <  )  <->  A. x  e.  RR+  ( vol* `  A )  <_  ( sup ( ran  S ,  RR* ,  <  )  +  x ) ) )
5047, 49mpbird 247 . . 3  |-  ( ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_  U. ran  ( [,]  o.  F ) )  /\  sup ( ran 
S ,  RR* ,  <  )  e.  RR )  -> 
( vol* `  A )  <_  sup ( ran  S ,  RR* ,  <  ) )
5131, 50syldan 487 . 2  |-  ( ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_  U. ran  ( [,]  o.  F ) )  /\  sup ( ran 
S ,  RR* ,  <  )  =/= +oo )  -> 
( vol* `  A )  <_  sup ( ran  S ,  RR* ,  <  ) )
5211, 51pm2.61dane 2881 1  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  A  C_ 
U. ran  ( [,]  o.  F ) )  -> 
( vol* `  A )  <_  sup ( ran  S ,  RR* ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    i^i cin 3573    C_ wss 3574   (/)c0 3915   <.cop 4183   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   supcsup 8346   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   RR+crp 11832   [,)cico 12177   [,]cicc 12178    seqcseq 12801   ^cexp 12860   abscabs 13974   vol*covol 23231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-ovol 23233
This theorem is referenced by:  ovolctb  23258  ovolicc1  23284  ioombl1lem4  23329  uniiccvol  23348
  Copyright terms: Public domain W3C validator