MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem5 Structured version   Visualization version   Unicode version

Theorem uniioombllem5 23355
Description: Lemma for uniioombl 23357. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
uniioombl.1  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
uniioombl.2  |-  ( ph  -> Disj  x  e.  NN  ( (,) `  ( F `  x ) ) )
uniioombl.3  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
uniioombl.a  |-  A  = 
U. ran  ( (,)  o.  F )
uniioombl.e  |-  ( ph  ->  ( vol* `  E )  e.  RR )
uniioombl.c  |-  ( ph  ->  C  e.  RR+ )
uniioombl.g  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
uniioombl.s  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  G ) )
uniioombl.t  |-  T  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
uniioombl.v  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( ( vol* `  E )  +  C
) )
uniioombl.m  |-  ( ph  ->  M  e.  NN )
uniioombl.m2  |-  ( ph  ->  ( abs `  (
( T `  M
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
)
uniioombl.k  |-  K  = 
U. ( ( (,) 
o.  G ) "
( 1 ... M
) )
uniioombl.n  |-  ( ph  ->  N  e.  NN )
uniioombl.n2  |-  ( ph  ->  A. j  e.  ( 1 ... M ) ( abs `  ( sum_ i  e.  ( 1 ... N ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  M
) )
uniioombl.l  |-  L  = 
U. ( ( (,) 
o.  F ) "
( 1 ... N
) )
Assertion
Ref Expression
uniioombllem5  |-  ( ph  ->  ( ( vol* `  ( E  i^i  A
) )  +  ( vol* `  ( E  \  A ) ) )  <_  ( ( vol* `  E )  +  ( 4  x.  C ) ) )
Distinct variable groups:    i, j, x, F    i, G, j, x    j, K, x    A, j, x    C, i, j, x    i, M, j, x    i, N, j    ph, i, j, x    T, i, j, x
Allowed substitution hints:    A( i)    S( x, i, j)    E( x, i, j)    K( i)    L( x, i, j)    N( x)

Proof of Theorem uniioombllem5
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 inss1 3833 . . . . 5  |-  ( E  i^i  A )  C_  E
21a1i 11 . . . 4  |-  ( ph  ->  ( E  i^i  A
)  C_  E )
3 uniioombl.s . . . . 5  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  G ) )
4 uniioombl.g . . . . . . . 8  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
54uniiccdif 23346 . . . . . . 7  |-  ( ph  ->  ( U. ran  ( (,)  o.  G )  C_  U.
ran  ( [,]  o.  G )  /\  ( vol* `  ( U. ran  ( [,]  o.  G
)  \  U. ran  ( (,)  o.  G ) ) )  =  0 ) )
65simpld 475 . . . . . 6  |-  ( ph  ->  U. ran  ( (,) 
o.  G )  C_  U.
ran  ( [,]  o.  G ) )
7 ovolficcss 23238 . . . . . . 7  |-  ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  U. ran  ( [,]  o.  G ) 
C_  RR )
84, 7syl 17 . . . . . 6  |-  ( ph  ->  U. ran  ( [,] 
o.  G )  C_  RR )
96, 8sstrd 3613 . . . . 5  |-  ( ph  ->  U. ran  ( (,) 
o.  G )  C_  RR )
103, 9sstrd 3613 . . . 4  |-  ( ph  ->  E  C_  RR )
11 uniioombl.e . . . 4  |-  ( ph  ->  ( vol* `  E )  e.  RR )
12 ovolsscl 23254 . . . 4  |-  ( ( ( E  i^i  A
)  C_  E  /\  E  C_  RR  /\  ( vol* `  E )  e.  RR )  -> 
( vol* `  ( E  i^i  A ) )  e.  RR )
132, 10, 11, 12syl3anc 1326 . . 3  |-  ( ph  ->  ( vol* `  ( E  i^i  A ) )  e.  RR )
14 difssd 3738 . . . 4  |-  ( ph  ->  ( E  \  A
)  C_  E )
15 ovolsscl 23254 . . . 4  |-  ( ( ( E  \  A
)  C_  E  /\  E  C_  RR  /\  ( vol* `  E )  e.  RR )  -> 
( vol* `  ( E  \  A ) )  e.  RR )
1614, 10, 11, 15syl3anc 1326 . . 3  |-  ( ph  ->  ( vol* `  ( E  \  A ) )  e.  RR )
1713, 16readdcld 10069 . 2  |-  ( ph  ->  ( ( vol* `  ( E  i^i  A
) )  +  ( vol* `  ( E  \  A ) ) )  e.  RR )
18 inss1 3833 . . . . . 6  |-  ( K  i^i  A )  C_  K
1918a1i 11 . . . . 5  |-  ( ph  ->  ( K  i^i  A
)  C_  K )
20 uniioombl.k . . . . . . . 8  |-  K  = 
U. ( ( (,) 
o.  G ) "
( 1 ... M
) )
21 imassrn 5477 . . . . . . . . 9  |-  ( ( (,)  o.  G )
" ( 1 ... M ) )  C_  ran  ( (,)  o.  G
)
2221unissi 4461 . . . . . . . 8  |-  U. (
( (,)  o.  G
) " ( 1 ... M ) ) 
C_  U. ran  ( (,) 
o.  G )
2320, 22eqsstri 3635 . . . . . . 7  |-  K  C_  U.
ran  ( (,)  o.  G )
2423a1i 11 . . . . . 6  |-  ( ph  ->  K  C_  U. ran  ( (,)  o.  G ) )
2524, 9sstrd 3613 . . . . 5  |-  ( ph  ->  K  C_  RR )
26 uniioombl.1 . . . . . . . 8  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
27 uniioombl.2 . . . . . . . 8  |-  ( ph  -> Disj  x  e.  NN  ( (,) `  ( F `  x ) ) )
28 uniioombl.3 . . . . . . . 8  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
29 uniioombl.a . . . . . . . 8  |-  A  = 
U. ran  ( (,)  o.  F )
30 uniioombl.c . . . . . . . 8  |-  ( ph  ->  C  e.  RR+ )
31 uniioombl.t . . . . . . . 8  |-  T  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
32 uniioombl.v . . . . . . . 8  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( ( vol* `  E )  +  C
) )
3326, 27, 28, 29, 11, 30, 4, 3, 31, 32uniioombllem1 23349 . . . . . . 7  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  e.  RR )
34 ssid 3624 . . . . . . . 8  |-  U. ran  ( (,)  o.  G ) 
C_  U. ran  ( (,) 
o.  G )
3531ovollb 23247 . . . . . . . 8  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  U. ran  ( (,)  o.  G
)  C_  U. ran  ( (,)  o.  G ) )  ->  ( vol* `  U. ran  ( (,) 
o.  G ) )  <_  sup ( ran  T ,  RR* ,  <  )
)
364, 34, 35sylancl 694 . . . . . . 7  |-  ( ph  ->  ( vol* `  U. ran  ( (,)  o.  G ) )  <_  sup ( ran  T ,  RR* ,  <  ) )
37 ovollecl 23251 . . . . . . 7  |-  ( ( U. ran  ( (,) 
o.  G )  C_  RR  /\  sup ( ran 
T ,  RR* ,  <  )  e.  RR  /\  ( vol* `  U. ran  ( (,)  o.  G ) )  <_  sup ( ran  T ,  RR* ,  <  ) )  ->  ( vol* `  U. ran  ( (,)  o.  G ) )  e.  RR )
389, 33, 36, 37syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( vol* `  U. ran  ( (,)  o.  G ) )  e.  RR )
39 ovolsscl 23254 . . . . . 6  |-  ( ( K  C_  U. ran  ( (,)  o.  G )  /\  U.
ran  ( (,)  o.  G )  C_  RR  /\  ( vol* `  U. ran  ( (,)  o.  G ) )  e.  RR )  ->  ( vol* `  K )  e.  RR )
4024, 9, 38, 39syl3anc 1326 . . . . 5  |-  ( ph  ->  ( vol* `  K )  e.  RR )
41 ovolsscl 23254 . . . . 5  |-  ( ( ( K  i^i  A
)  C_  K  /\  K  C_  RR  /\  ( vol* `  K )  e.  RR )  -> 
( vol* `  ( K  i^i  A ) )  e.  RR )
4219, 25, 40, 41syl3anc 1326 . . . 4  |-  ( ph  ->  ( vol* `  ( K  i^i  A ) )  e.  RR )
43 difssd 3738 . . . . 5  |-  ( ph  ->  ( K  \  A
)  C_  K )
44 ovolsscl 23254 . . . . 5  |-  ( ( ( K  \  A
)  C_  K  /\  K  C_  RR  /\  ( vol* `  K )  e.  RR )  -> 
( vol* `  ( K  \  A ) )  e.  RR )
4543, 25, 40, 44syl3anc 1326 . . . 4  |-  ( ph  ->  ( vol* `  ( K  \  A ) )  e.  RR )
4642, 45readdcld 10069 . . 3  |-  ( ph  ->  ( ( vol* `  ( K  i^i  A
) )  +  ( vol* `  ( K  \  A ) ) )  e.  RR )
4730rpred 11872 . . . 4  |-  ( ph  ->  C  e.  RR )
4847, 47readdcld 10069 . . 3  |-  ( ph  ->  ( C  +  C
)  e.  RR )
4946, 48readdcld 10069 . 2  |-  ( ph  ->  ( ( ( vol* `  ( K  i^i  A ) )  +  ( vol* `  ( K  \  A ) ) )  +  ( C  +  C ) )  e.  RR )
50 4re 11097 . . . 4  |-  4  e.  RR
51 remulcl 10021 . . . 4  |-  ( ( 4  e.  RR  /\  C  e.  RR )  ->  ( 4  x.  C
)  e.  RR )
5250, 47, 51sylancr 695 . . 3  |-  ( ph  ->  ( 4  x.  C
)  e.  RR )
5311, 52readdcld 10069 . 2  |-  ( ph  ->  ( ( vol* `  E )  +  ( 4  x.  C ) )  e.  RR )
54 uniioombl.m . . . 4  |-  ( ph  ->  M  e.  NN )
55 uniioombl.m2 . . . 4  |-  ( ph  ->  ( abs `  (
( T `  M
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
)
5626, 27, 28, 29, 11, 30, 4, 3, 31, 32, 54, 55, 20uniioombllem3 23353 . . 3  |-  ( ph  ->  ( ( vol* `  ( E  i^i  A
) )  +  ( vol* `  ( E  \  A ) ) )  <  ( ( ( vol* `  ( K  i^i  A ) )  +  ( vol* `  ( K  \  A ) ) )  +  ( C  +  C ) ) )
5717, 49, 56ltled 10185 . 2  |-  ( ph  ->  ( ( vol* `  ( E  i^i  A
) )  +  ( vol* `  ( E  \  A ) ) )  <_  ( (
( vol* `  ( K  i^i  A ) )  +  ( vol* `  ( K  \  A ) ) )  +  ( C  +  C ) ) )
5811, 48readdcld 10069 . . . 4  |-  ( ph  ->  ( ( vol* `  E )  +  ( C  +  C ) )  e.  RR )
5940, 47readdcld 10069 . . . . 5  |-  ( ph  ->  ( ( vol* `  K )  +  C
)  e.  RR )
60 inss1 3833 . . . . . . . . . 10  |-  ( K  i^i  L )  C_  K
6160a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( K  i^i  L
)  C_  K )
62 ovolsscl 23254 . . . . . . . . 9  |-  ( ( ( K  i^i  L
)  C_  K  /\  K  C_  RR  /\  ( vol* `  K )  e.  RR )  -> 
( vol* `  ( K  i^i  L ) )  e.  RR )
6361, 25, 40, 62syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( vol* `  ( K  i^i  L ) )  e.  RR )
6463, 47readdcld 10069 . . . . . . 7  |-  ( ph  ->  ( ( vol* `  ( K  i^i  L
) )  +  C
)  e.  RR )
65 difssd 3738 . . . . . . . 8  |-  ( ph  ->  ( K  \  L
)  C_  K )
66 ovolsscl 23254 . . . . . . . 8  |-  ( ( ( K  \  L
)  C_  K  /\  K  C_  RR  /\  ( vol* `  K )  e.  RR )  -> 
( vol* `  ( K  \  L ) )  e.  RR )
6765, 25, 40, 66syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( vol* `  ( K  \  L ) )  e.  RR )
68 uniioombl.n . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
69 uniioombl.n2 . . . . . . . 8  |-  ( ph  ->  A. j  e.  ( 1 ... M ) ( abs `  ( sum_ i  e.  ( 1 ... N ) ( vol* `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol* `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  M
) )
70 uniioombl.l . . . . . . . 8  |-  L  = 
U. ( ( (,) 
o.  F ) "
( 1 ... N
) )
7126, 27, 28, 29, 11, 30, 4, 3, 31, 32, 54, 55, 20, 68, 69, 70uniioombllem4 23354 . . . . . . 7  |-  ( ph  ->  ( vol* `  ( K  i^i  A ) )  <_  ( ( vol* `  ( K  i^i  L ) )  +  C ) )
72 imassrn 5477 . . . . . . . . . . 11  |-  ( ( (,)  o.  F )
" ( 1 ... N ) )  C_  ran  ( (,)  o.  F
)
7372unissi 4461 . . . . . . . . . 10  |-  U. (
( (,)  o.  F
) " ( 1 ... N ) ) 
C_  U. ran  ( (,) 
o.  F )
7473, 70, 293sstr4i 3644 . . . . . . . . 9  |-  L  C_  A
75 sscon 3744 . . . . . . . . 9  |-  ( L 
C_  A  ->  ( K  \  A )  C_  ( K  \  L ) )
7674, 75mp1i 13 . . . . . . . 8  |-  ( ph  ->  ( K  \  A
)  C_  ( K  \  L ) )
7765, 25sstrd 3613 . . . . . . . 8  |-  ( ph  ->  ( K  \  L
)  C_  RR )
78 ovolss 23253 . . . . . . . 8  |-  ( ( ( K  \  A
)  C_  ( K  \  L )  /\  ( K  \  L )  C_  RR )  ->  ( vol* `  ( K  \  A ) )  <_ 
( vol* `  ( K  \  L ) ) )
7976, 77, 78syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( vol* `  ( K  \  A ) )  <_  ( vol* `  ( K  \  L ) ) )
8042, 45, 64, 67, 71, 79le2addd 10646 . . . . . 6  |-  ( ph  ->  ( ( vol* `  ( K  i^i  A
) )  +  ( vol* `  ( K  \  A ) ) )  <_  ( (
( vol* `  ( K  i^i  L ) )  +  C )  +  ( vol* `  ( K  \  L
) ) ) )
8163recnd 10068 . . . . . . . 8  |-  ( ph  ->  ( vol* `  ( K  i^i  L ) )  e.  CC )
8247recnd 10068 . . . . . . . 8  |-  ( ph  ->  C  e.  CC )
8367recnd 10068 . . . . . . . 8  |-  ( ph  ->  ( vol* `  ( K  \  L ) )  e.  CC )
8481, 82, 83add32d 10263 . . . . . . 7  |-  ( ph  ->  ( ( ( vol* `  ( K  i^i  L ) )  +  C )  +  ( vol* `  ( K  \  L ) ) )  =  ( ( ( vol* `  ( K  i^i  L ) )  +  ( vol* `  ( K  \  L ) ) )  +  C ) )
85 ioof 12271 . . . . . . . . . . . . 13  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
86 inss2 3834 . . . . . . . . . . . . . . 15  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
87 rexpssxrxp 10084 . . . . . . . . . . . . . . 15  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
8886, 87sstri 3612 . . . . . . . . . . . . . 14  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
89 fss 6056 . . . . . . . . . . . . . 14  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* ) )  ->  F : NN --> ( RR*  X. 
RR* ) )
9026, 88, 89sylancl 694 . . . . . . . . . . . . 13  |-  ( ph  ->  F : NN --> ( RR*  X. 
RR* ) )
91 fco 6058 . . . . . . . . . . . . 13  |-  ( ( (,) : ( RR*  X. 
RR* ) --> ~P RR  /\  F : NN --> ( RR*  X. 
RR* ) )  -> 
( (,)  o.  F
) : NN --> ~P RR )
9285, 90, 91sylancr 695 . . . . . . . . . . . 12  |-  ( ph  ->  ( (,)  o.  F
) : NN --> ~P RR )
93 ffun 6048 . . . . . . . . . . . 12  |-  ( ( (,)  o.  F ) : NN --> ~P RR  ->  Fun  ( (,)  o.  F ) )
94 funiunfv 6506 . . . . . . . . . . . 12  |-  ( Fun  ( (,)  o.  F
)  ->  U_ n  e.  ( 1 ... N
) ( ( (,) 
o.  F ) `  n )  =  U. ( ( (,)  o.  F ) " (
1 ... N ) ) )
9592, 93, 943syl 18 . . . . . . . . . . 11  |-  ( ph  ->  U_ n  e.  ( 1 ... N ) ( ( (,)  o.  F ) `  n
)  =  U. (
( (,)  o.  F
) " ( 1 ... N ) ) )
9695, 70syl6eqr 2674 . . . . . . . . . 10  |-  ( ph  ->  U_ n  e.  ( 1 ... N ) ( ( (,)  o.  F ) `  n
)  =  L )
97 fzfid 12772 . . . . . . . . . . 11  |-  ( ph  ->  ( 1 ... N
)  e.  Fin )
98 elfznn 12370 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( 1 ... N )  ->  n  e.  NN )
99 fvco3 6275 . . . . . . . . . . . . . . 15  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( (,)  o.  F
) `  n )  =  ( (,) `  ( F `  n )
) )
10026, 98, 99syl2an 494 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( (,)  o.  F
) `  n )  =  ( (,) `  ( F `  n )
) )
101 ffvelrn 6357 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  ( F `  n )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
10226, 98, 101syl2an 494 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  ( F `  n )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
10386, 102sseldi 3601 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  ( F `  n )  e.  ( RR  X.  RR ) )
104 1st2nd2 7205 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  n )  e.  ( RR  X.  RR )  ->  ( F `
 n )  = 
<. ( 1st `  ( F `  n )
) ,  ( 2nd `  ( F `  n
) ) >. )
105103, 104syl 17 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  ( F `  n )  =  <. ( 1st `  ( F `  n )
) ,  ( 2nd `  ( F `  n
) ) >. )
106105fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  ( (,) `  ( F `  n ) )  =  ( (,) `  <. ( 1st `  ( F `
 n ) ) ,  ( 2nd `  ( F `  n )
) >. ) )
107 df-ov 6653 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  ( F `
 n ) ) (,) ( 2nd `  ( F `  n )
) )  =  ( (,) `  <. ( 1st `  ( F `  n ) ) ,  ( 2nd `  ( F `  n )
) >. )
108106, 107syl6eqr 2674 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  ( (,) `  ( F `  n ) )  =  ( ( 1st `  ( F `  n )
) (,) ( 2nd `  ( F `  n
) ) ) )
109100, 108eqtrd 2656 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( (,)  o.  F
) `  n )  =  ( ( 1st `  ( F `  n
) ) (,) ( 2nd `  ( F `  n ) ) ) )
110 ioombl 23333 . . . . . . . . . . . . 13  |-  ( ( 1st `  ( F `
 n ) ) (,) ( 2nd `  ( F `  n )
) )  e.  dom  vol
111109, 110syl6eqel 2709 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( (,)  o.  F
) `  n )  e.  dom  vol )
112111ralrimiva 2966 . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  ( 1 ... N ) ( ( (,)  o.  F ) `  n
)  e.  dom  vol )
113 finiunmbl 23312 . . . . . . . . . . 11  |-  ( ( ( 1 ... N
)  e.  Fin  /\  A. n  e.  ( 1 ... N ) ( ( (,)  o.  F
) `  n )  e.  dom  vol )  ->  U_ n  e.  (
1 ... N ) ( ( (,)  o.  F
) `  n )  e.  dom  vol )
11497, 112, 113syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  U_ n  e.  ( 1 ... N ) ( ( (,)  o.  F ) `  n
)  e.  dom  vol )
11596, 114eqeltrrd 2702 . . . . . . . . 9  |-  ( ph  ->  L  e.  dom  vol )
116 mblsplit 23300 . . . . . . . . 9  |-  ( ( L  e.  dom  vol  /\  K  C_  RR  /\  ( vol* `  K )  e.  RR )  -> 
( vol* `  K )  =  ( ( vol* `  ( K  i^i  L ) )  +  ( vol* `  ( K  \  L ) ) ) )
117115, 25, 40, 116syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( vol* `  K )  =  ( ( vol* `  ( K  i^i  L ) )  +  ( vol* `  ( K  \  L ) ) ) )
118117oveq1d 6665 . . . . . . 7  |-  ( ph  ->  ( ( vol* `  K )  +  C
)  =  ( ( ( vol* `  ( K  i^i  L ) )  +  ( vol* `  ( K  \  L ) ) )  +  C ) )
11984, 118eqtr4d 2659 . . . . . 6  |-  ( ph  ->  ( ( ( vol* `  ( K  i^i  L ) )  +  C )  +  ( vol* `  ( K  \  L ) ) )  =  ( ( vol* `  K
)  +  C ) )
12080, 119breqtrd 4679 . . . . 5  |-  ( ph  ->  ( ( vol* `  ( K  i^i  A
) )  +  ( vol* `  ( K  \  A ) ) )  <_  ( ( vol* `  K )  +  C ) )
12111, 47readdcld 10069 . . . . . . 7  |-  ( ph  ->  ( ( vol* `  E )  +  C
)  e.  RR )
12231ovollb 23247 . . . . . . . . 9  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  K  C_ 
U. ran  ( (,)  o.  G ) )  -> 
( vol* `  K )  <_  sup ( ran  T ,  RR* ,  <  ) )
1234, 23, 122sylancl 694 . . . . . . . 8  |-  ( ph  ->  ( vol* `  K )  <_  sup ( ran  T ,  RR* ,  <  ) )
12440, 33, 121, 123, 32letrd 10194 . . . . . . 7  |-  ( ph  ->  ( vol* `  K )  <_  (
( vol* `  E )  +  C
) )
12540, 121, 47, 124leadd1dd 10641 . . . . . 6  |-  ( ph  ->  ( ( vol* `  K )  +  C
)  <_  ( (
( vol* `  E )  +  C
)  +  C ) )
12611recnd 10068 . . . . . . 7  |-  ( ph  ->  ( vol* `  E )  e.  CC )
127126, 82, 82addassd 10062 . . . . . 6  |-  ( ph  ->  ( ( ( vol* `  E )  +  C )  +  C
)  =  ( ( vol* `  E
)  +  ( C  +  C ) ) )
128125, 127breqtrd 4679 . . . . 5  |-  ( ph  ->  ( ( vol* `  K )  +  C
)  <_  ( ( vol* `  E )  +  ( C  +  C ) ) )
12946, 59, 58, 120, 128letrd 10194 . . . 4  |-  ( ph  ->  ( ( vol* `  ( K  i^i  A
) )  +  ( vol* `  ( K  \  A ) ) )  <_  ( ( vol* `  E )  +  ( C  +  C ) ) )
13046, 58, 48, 129leadd1dd 10641 . . 3  |-  ( ph  ->  ( ( ( vol* `  ( K  i^i  A ) )  +  ( vol* `  ( K  \  A ) ) )  +  ( C  +  C ) )  <_  ( (
( vol* `  E )  +  ( C  +  C ) )  +  ( C  +  C ) ) )
13148recnd 10068 . . . . 5  |-  ( ph  ->  ( C  +  C
)  e.  CC )
132126, 131, 131addassd 10062 . . . 4  |-  ( ph  ->  ( ( ( vol* `  E )  +  ( C  +  C ) )  +  ( C  +  C
) )  =  ( ( vol* `  E )  +  ( ( C  +  C
)  +  ( C  +  C ) ) ) )
133 2t2e4 11177 . . . . . . 7  |-  ( 2  x.  2 )  =  4
134133oveq1i 6660 . . . . . 6  |-  ( ( 2  x.  2 )  x.  C )  =  ( 4  x.  C
)
135 2cnd 11093 . . . . . . . 8  |-  ( ph  ->  2  e.  CC )
136135, 135, 82mulassd 10063 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  2 )  x.  C
)  =  ( 2  x.  ( 2  x.  C ) ) )
137822timesd 11275 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  C
)  =  ( C  +  C ) )
138137oveq2d 6666 . . . . . . 7  |-  ( ph  ->  ( 2  x.  (
2  x.  C ) )  =  ( 2  x.  ( C  +  C ) ) )
1391312timesd 11275 . . . . . . 7  |-  ( ph  ->  ( 2  x.  ( C  +  C )
)  =  ( ( C  +  C )  +  ( C  +  C ) ) )
140136, 138, 1393eqtrd 2660 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  2 )  x.  C
)  =  ( ( C  +  C )  +  ( C  +  C ) ) )
141134, 140syl5eqr 2670 . . . . 5  |-  ( ph  ->  ( 4  x.  C
)  =  ( ( C  +  C )  +  ( C  +  C ) ) )
142141oveq2d 6666 . . . 4  |-  ( ph  ->  ( ( vol* `  E )  +  ( 4  x.  C ) )  =  ( ( vol* `  E
)  +  ( ( C  +  C )  +  ( C  +  C ) ) ) )
143132, 142eqtr4d 2659 . . 3  |-  ( ph  ->  ( ( ( vol* `  E )  +  ( C  +  C ) )  +  ( C  +  C
) )  =  ( ( vol* `  E )  +  ( 4  x.  C ) ) )
144130, 143breqtrd 4679 . 2  |-  ( ph  ->  ( ( ( vol* `  ( K  i^i  A ) )  +  ( vol* `  ( K  \  A ) ) )  +  ( C  +  C ) )  <_  ( ( vol* `  E )  +  ( 4  x.  C ) ) )
14517, 49, 53, 57, 144letrd 10194 1  |-  ( ph  ->  ( ( vol* `  ( E  i^i  A
) )  +  ( vol* `  ( E  \  A ) ) )  <_  ( ( vol* `  E )  +  ( 4  x.  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    \ cdif 3571    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   <.cop 4183   U.cuni 4436   U_ciun 4520  Disj wdisj 4620   class class class wbr 4653    X. cxp 5112   dom cdm 5114   ran crn 5115   "cima 5117    o. ccom 5118   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   Fincfn 7955   supcsup 8346   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   4c4 11072   RR+crp 11832   (,)cioo 12175   [,]cicc 12178   ...cfz 12326    seqcseq 12801   abscabs 13974   sum_csu 14416   vol*covol 23231   volcvol 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234
This theorem is referenced by:  uniioombllem6  23356
  Copyright terms: Public domain W3C validator