| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapsub | Structured version Visualization version Unicode version | ||
| Description: The projective map of a Hilbert lattice maps to projective subspaces. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.) |
| Ref | Expression |
|---|---|
| pmapsub.b |
|
| pmapsub.s |
|
| pmapsub.m |
|
| Ref | Expression |
|---|---|
| pmapsub |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapsub.b |
. . 3
| |
| 2 | eqid 2622 |
. . 3
| |
| 3 | eqid 2622 |
. . 3
| |
| 4 | pmapsub.m |
. . 3
| |
| 5 | 1, 2, 3, 4 | pmapval 35043 |
. 2
|
| 6 | breq1 4656 |
. . . . . . . . . . . . . 14
| |
| 7 | 6 | elrab 3363 |
. . . . . . . . . . . . 13
|
| 8 | 1, 3 | atbase 34576 |
. . . . . . . . . . . . . 14
|
| 9 | 8 | anim1i 592 |
. . . . . . . . . . . . 13
|
| 10 | 7, 9 | sylbi 207 |
. . . . . . . . . . . 12
|
| 11 | breq1 4656 |
. . . . . . . . . . . . . 14
| |
| 12 | 11 | elrab 3363 |
. . . . . . . . . . . . 13
|
| 13 | 1, 3 | atbase 34576 |
. . . . . . . . . . . . . 14
|
| 14 | 13 | anim1i 592 |
. . . . . . . . . . . . 13
|
| 15 | 12, 14 | sylbi 207 |
. . . . . . . . . . . 12
|
| 16 | 10, 15 | anim12i 590 |
. . . . . . . . . . 11
|
| 17 | an4 865 |
. . . . . . . . . . 11
| |
| 18 | 16, 17 | sylib 208 |
. . . . . . . . . 10
|
| 19 | 18 | anim2i 593 |
. . . . . . . . 9
|
| 20 | 1, 3 | atbase 34576 |
. . . . . . . . 9
|
| 21 | eqid 2622 |
. . . . . . . . . . . . . . . . 17
| |
| 22 | 1, 2, 21 | latjle12 17062 |
. . . . . . . . . . . . . . . 16
|
| 23 | 22 | biimpd 219 |
. . . . . . . . . . . . . . 15
|
| 24 | 23 | 3exp2 1285 |
. . . . . . . . . . . . . 14
|
| 25 | 24 | impd 447 |
. . . . . . . . . . . . 13
|
| 26 | 25 | com23 86 |
. . . . . . . . . . . 12
|
| 27 | 26 | imp43 621 |
. . . . . . . . . . 11
|
| 28 | 27 | adantr 481 |
. . . . . . . . . 10
|
| 29 | 1, 21 | latjcl 17051 |
. . . . . . . . . . . . . 14
|
| 30 | 29 | 3expib 1268 |
. . . . . . . . . . . . 13
|
| 31 | 1, 2 | lattr 17056 |
. . . . . . . . . . . . . . 15
|
| 32 | 31 | 3exp2 1285 |
. . . . . . . . . . . . . 14
|
| 33 | 32 | com24 95 |
. . . . . . . . . . . . 13
|
| 34 | 30, 33 | syl5d 73 |
. . . . . . . . . . . 12
|
| 35 | 34 | imp41 619 |
. . . . . . . . . . 11
|
| 36 | 35 | adantlrr 757 |
. . . . . . . . . 10
|
| 37 | 28, 36 | mpan2d 710 |
. . . . . . . . 9
|
| 38 | 19, 20, 37 | syl2an 494 |
. . . . . . . 8
|
| 39 | simpr 477 |
. . . . . . . 8
| |
| 40 | 38, 39 | jctild 566 |
. . . . . . 7
|
| 41 | breq1 4656 |
. . . . . . . 8
| |
| 42 | 41 | elrab 3363 |
. . . . . . 7
|
| 43 | 40, 42 | syl6ibr 242 |
. . . . . 6
|
| 44 | 43 | ralrimiva 2966 |
. . . . 5
|
| 45 | 44 | ralrimivva 2971 |
. . . 4
|
| 46 | ssrab2 3687 |
. . . 4
| |
| 47 | 45, 46 | jctil 560 |
. . 3
|
| 48 | pmapsub.s |
. . . . 5
| |
| 49 | 2, 21, 3, 48 | ispsubsp 35031 |
. . . 4
|
| 50 | 49 | adantr 481 |
. . 3
|
| 51 | 47, 50 | mpbird 247 |
. 2
|
| 52 | 5, 51 | eqeltrd 2701 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-poset 16946 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-lat 17046 df-ats 34554 df-psubsp 34789 df-pmap 34790 |
| This theorem is referenced by: hlmod1i 35142 polsubN 35193 pl42lem4N 35268 |
| Copyright terms: Public domain | W3C validator |