Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtridfv1 Structured version   Visualization version   Unicode version

Theorem pmtridfv1 29857
Description: Value at X of the transposition of  X and  Y (understood to be the identity when X = Y ). (Contributed by Thierry Arnoux, 3-Jan-2022.)
Hypotheses
Ref Expression
pmtridf1o.a  |-  ( ph  ->  A  e.  V )
pmtridf1o.x  |-  ( ph  ->  X  e.  A )
pmtridf1o.y  |-  ( ph  ->  Y  e.  A )
pmtridf1o.t  |-  T  =  if ( X  =  Y ,  (  _I  |`  A ) ,  ( (pmTrsp `  A ) `  { X ,  Y } ) )
Assertion
Ref Expression
pmtridfv1  |-  ( ph  ->  ( T `  X
)  =  Y )

Proof of Theorem pmtridfv1
StepHypRef Expression
1 pmtridf1o.t . . . . 5  |-  T  =  if ( X  =  Y ,  (  _I  |`  A ) ,  ( (pmTrsp `  A ) `  { X ,  Y } ) )
2 simpr 477 . . . . . 6  |-  ( (
ph  /\  X  =  Y )  ->  X  =  Y )
32iftrued 4094 . . . . 5  |-  ( (
ph  /\  X  =  Y )  ->  if ( X  =  Y ,  (  _I  |`  A ) ,  ( (pmTrsp `  A ) `  { X ,  Y }
) )  =  (  _I  |`  A )
)
41, 3syl5eq 2668 . . . 4  |-  ( (
ph  /\  X  =  Y )  ->  T  =  (  _I  |`  A ) )
54fveq1d 6193 . . 3  |-  ( (
ph  /\  X  =  Y )  ->  ( T `  X )  =  ( (  _I  |`  A ) `  X
) )
6 pmtridf1o.x . . . . 5  |-  ( ph  ->  X  e.  A )
7 fvresi 6439 . . . . 5  |-  ( X  e.  A  ->  (
(  _I  |`  A ) `
 X )  =  X )
86, 7syl 17 . . . 4  |-  ( ph  ->  ( (  _I  |`  A ) `
 X )  =  X )
98adantr 481 . . 3  |-  ( (
ph  /\  X  =  Y )  ->  (
(  _I  |`  A ) `
 X )  =  X )
105, 9, 23eqtrd 2660 . 2  |-  ( (
ph  /\  X  =  Y )  ->  ( T `  X )  =  Y )
11 simpr 477 . . . . . . 7  |-  ( (
ph  /\  X  =/=  Y )  ->  X  =/=  Y )
1211neneqd 2799 . . . . . 6  |-  ( (
ph  /\  X  =/=  Y )  ->  -.  X  =  Y )
1312iffalsed 4097 . . . . 5  |-  ( (
ph  /\  X  =/=  Y )  ->  if ( X  =  Y , 
(  _I  |`  A ) ,  ( (pmTrsp `  A ) `  { X ,  Y }
) )  =  ( (pmTrsp `  A ) `  { X ,  Y } ) )
141, 13syl5eq 2668 . . . 4  |-  ( (
ph  /\  X  =/=  Y )  ->  T  =  ( (pmTrsp `  A ) `  { X ,  Y } ) )
1514fveq1d 6193 . . 3  |-  ( (
ph  /\  X  =/=  Y )  ->  ( T `  X )  =  ( ( (pmTrsp `  A
) `  { X ,  Y } ) `  X ) )
16 pmtridf1o.a . . . . 5  |-  ( ph  ->  A  e.  V )
1716adantr 481 . . . 4  |-  ( (
ph  /\  X  =/=  Y )  ->  A  e.  V )
186adantr 481 . . . 4  |-  ( (
ph  /\  X  =/=  Y )  ->  X  e.  A )
19 pmtridf1o.y . . . . 5  |-  ( ph  ->  Y  e.  A )
2019adantr 481 . . . 4  |-  ( (
ph  /\  X  =/=  Y )  ->  Y  e.  A )
21 eqid 2622 . . . . 5  |-  (pmTrsp `  A )  =  (pmTrsp `  A )
2221pmtrprfv 17873 . . . 4  |-  ( ( A  e.  V  /\  ( X  e.  A  /\  Y  e.  A  /\  X  =/=  Y
) )  ->  (
( (pmTrsp `  A
) `  { X ,  Y } ) `  X )  =  Y )
2317, 18, 20, 11, 22syl13anc 1328 . . 3  |-  ( (
ph  /\  X  =/=  Y )  ->  ( (
(pmTrsp `  A ) `  { X ,  Y } ) `  X
)  =  Y )
2415, 23eqtrd 2656 . 2  |-  ( (
ph  /\  X  =/=  Y )  ->  ( T `  X )  =  Y )
2510, 24pm2.61dane 2881 1  |-  ( ph  ->  ( T `  X
)  =  Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   ifcif 4086   {cpr 4179    _I cid 5023    |` cres 5116   ` cfv 5888  pmTrspcpmtr 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pmtr 17862
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator