Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pol1N Structured version   Visualization version   Unicode version

Theorem pol1N 35196
Description: The polarity of the whole projective subspace is the empty space. Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polssat.a  |-  A  =  ( Atoms `  K )
polssat.p  |-  ._|_  =  ( _|_P `  K
)
Assertion
Ref Expression
pol1N  |-  ( K  e.  HL  ->  (  ._|_  `  A )  =  (/) )

Proof of Theorem pol1N
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 ssid 3624 . . 3  |-  A  C_  A
2 eqid 2622 . . . 4  |-  ( lub `  K )  =  ( lub `  K )
3 eqid 2622 . . . 4  |-  ( oc
`  K )  =  ( oc `  K
)
4 polssat.a . . . 4  |-  A  =  ( Atoms `  K )
5 eqid 2622 . . . 4  |-  ( pmap `  K )  =  (
pmap `  K )
6 polssat.p . . . 4  |-  ._|_  =  ( _|_P `  K
)
72, 3, 4, 5, 6polval2N 35192 . . 3  |-  ( ( K  e.  HL  /\  A  C_  A )  -> 
(  ._|_  `  A )  =  ( ( pmap `  K ) `  (
( oc `  K
) `  ( ( lub `  K ) `  A ) ) ) )
81, 7mpan2 707 . 2  |-  ( K  e.  HL  ->  (  ._|_  `  A )  =  ( ( pmap `  K
) `  ( ( oc `  K ) `  ( ( lub `  K
) `  A )
) ) )
9 hlop 34649 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OP )
10 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  K )  =  (
Base `  K )
1110, 4atbase 34576 . . . . . . . . . 10  |-  ( p  e.  A  ->  p  e.  ( Base `  K
) )
12 eqid 2622 . . . . . . . . . . 11  |-  ( le
`  K )  =  ( le `  K
)
13 eqid 2622 . . . . . . . . . . 11  |-  ( 1.
`  K )  =  ( 1. `  K
)
1410, 12, 13ople1 34478 . . . . . . . . . 10  |-  ( ( K  e.  OP  /\  p  e.  ( Base `  K ) )  ->  p ( le `  K ) ( 1.
`  K ) )
159, 11, 14syl2an 494 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  p  e.  A )  ->  p ( le `  K ) ( 1.
`  K ) )
1615ralrimiva 2966 . . . . . . . 8  |-  ( K  e.  HL  ->  A. p  e.  A  p ( le `  K ) ( 1. `  K ) )
17 rabid2 3118 . . . . . . . 8  |-  ( A  =  { p  e.  A  |  p ( le `  K ) ( 1. `  K
) }  <->  A. p  e.  A  p ( le `  K ) ( 1. `  K ) )
1816, 17sylibr 224 . . . . . . 7  |-  ( K  e.  HL  ->  A  =  { p  e.  A  |  p ( le `  K ) ( 1.
`  K ) } )
1918fveq2d 6195 . . . . . 6  |-  ( K  e.  HL  ->  (
( lub `  K
) `  A )  =  ( ( lub `  K ) `  {
p  e.  A  |  p ( le `  K ) ( 1.
`  K ) } ) )
20 hlomcmat 34651 . . . . . . 7  |-  ( K  e.  HL  ->  ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
) )
2110, 13op1cl 34472 . . . . . . . 8  |-  ( K  e.  OP  ->  ( 1. `  K )  e.  ( Base `  K
) )
229, 21syl 17 . . . . . . 7  |-  ( K  e.  HL  ->  ( 1. `  K )  e.  ( Base `  K
) )
2310, 12, 2, 4atlatmstc 34606 . . . . . . 7  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  ( 1. `  K )  e.  ( Base `  K
) )  ->  (
( lub `  K
) `  { p  e.  A  |  p
( le `  K
) ( 1. `  K ) } )  =  ( 1. `  K ) )
2420, 22, 23syl2anc 693 . . . . . 6  |-  ( K  e.  HL  ->  (
( lub `  K
) `  { p  e.  A  |  p
( le `  K
) ( 1. `  K ) } )  =  ( 1. `  K ) )
2519, 24eqtr2d 2657 . . . . 5  |-  ( K  e.  HL  ->  ( 1. `  K )  =  ( ( lub `  K
) `  A )
)
2625fveq2d 6195 . . . 4  |-  ( K  e.  HL  ->  (
( oc `  K
) `  ( 1. `  K ) )  =  ( ( oc `  K ) `  (
( lub `  K
) `  A )
) )
27 eqid 2622 . . . . . 6  |-  ( 0.
`  K )  =  ( 0. `  K
)
2827, 13, 3opoc1 34489 . . . . 5  |-  ( K  e.  OP  ->  (
( oc `  K
) `  ( 1. `  K ) )  =  ( 0. `  K
) )
299, 28syl 17 . . . 4  |-  ( K  e.  HL  ->  (
( oc `  K
) `  ( 1. `  K ) )  =  ( 0. `  K
) )
3026, 29eqtr3d 2658 . . 3  |-  ( K  e.  HL  ->  (
( oc `  K
) `  ( ( lub `  K ) `  A ) )  =  ( 0. `  K
) )
3130fveq2d 6195 . 2  |-  ( K  e.  HL  ->  (
( pmap `  K ) `  ( ( oc `  K ) `  (
( lub `  K
) `  A )
) )  =  ( ( pmap `  K
) `  ( 0. `  K ) ) )
32 hlatl 34647 . . 3  |-  ( K  e.  HL  ->  K  e.  AtLat )
3327, 5pmap0 35051 . . 3  |-  ( K  e.  AtLat  ->  ( ( pmap `  K ) `  ( 0. `  K ) )  =  (/) )
3432, 33syl 17 . 2  |-  ( K  e.  HL  ->  (
( pmap `  K ) `  ( 0. `  K
) )  =  (/) )
358, 31, 343eqtrd 2660 1  |-  ( K  e.  HL  ->  (  ._|_  `  A )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ` cfv 5888   Basecbs 15857   lecple 15948   occoc 15949   lubclub 16942   0.cp0 17037   1.cp1 17038   CLatccla 17107   OPcops 34459   OMLcoml 34462   Atomscatm 34550   AtLatcal 34551   HLchlt 34637   pmapcpmap 34783   _|_PcpolN 35188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-undef 7399  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-pmap 34790  df-polarityN 35189
This theorem is referenced by:  2pol0N  35197  1psubclN  35230
  Copyright terms: Public domain W3C validator