| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > poml4N | Structured version Visualization version Unicode version | ||
| Description: Orthomodular law for projective lattices. Lemma 3.3(1) in [Holland95] p. 215. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| poml4.a |
|
| poml4.p |
|
| Ref | Expression |
|---|---|
| poml4N |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2629 |
. . 3
| |
| 2 | eqid 2622 |
. . . . . . 7
| |
| 3 | poml4.a |
. . . . . . 7
| |
| 4 | eqid 2622 |
. . . . . . 7
| |
| 5 | poml4.p |
. . . . . . 7
| |
| 6 | 2, 3, 4, 5 | 2polvalN 35200 |
. . . . . 6
|
| 7 | 6 | 3adant2 1080 |
. . . . 5
|
| 8 | 7 | eqeq2d 2632 |
. . . 4
|
| 9 | 8 | biimpd 219 |
. . 3
|
| 10 | 1, 9 | syl5bi 232 |
. 2
|
| 11 | simpl1 1064 |
. . . . . . . 8
| |
| 12 | hloml 34644 |
. . . . . . . 8
| |
| 13 | 11, 12 | syl 17 |
. . . . . . 7
|
| 14 | hlclat 34645 |
. . . . . . . . 9
| |
| 15 | 11, 14 | syl 17 |
. . . . . . . 8
|
| 16 | simpl2 1065 |
. . . . . . . . 9
| |
| 17 | eqid 2622 |
. . . . . . . . . 10
| |
| 18 | 17, 3 | atssbase 34577 |
. . . . . . . . 9
|
| 19 | 16, 18 | syl6ss 3615 |
. . . . . . . 8
|
| 20 | 17, 2 | clatlubcl 17112 |
. . . . . . . 8
|
| 21 | 15, 19, 20 | syl2anc 693 |
. . . . . . 7
|
| 22 | simpl3 1066 |
. . . . . . . . 9
| |
| 23 | 22, 18 | syl6ss 3615 |
. . . . . . . 8
|
| 24 | 17, 2 | clatlubcl 17112 |
. . . . . . . 8
|
| 25 | 15, 23, 24 | syl2anc 693 |
. . . . . . 7
|
| 26 | 13, 21, 25 | 3jca 1242 |
. . . . . 6
|
| 27 | simprl 794 |
. . . . . . 7
| |
| 28 | eqid 2622 |
. . . . . . . 8
| |
| 29 | 17, 28, 2 | lubss 17121 |
. . . . . . 7
|
| 30 | 15, 23, 27, 29 | syl3anc 1326 |
. . . . . 6
|
| 31 | eqid 2622 |
. . . . . . 7
| |
| 32 | eqid 2622 |
. . . . . . 7
| |
| 33 | 17, 28, 31, 32 | omllaw4 34533 |
. . . . . 6
|
| 34 | 26, 30, 33 | sylc 65 |
. . . . 5
|
| 35 | 34 | fveq2d 6195 |
. . . 4
|
| 36 | 2, 32, 3, 4, 5 | polval2N 35192 |
. . . . . . . . . . 11
|
| 37 | 11, 16, 36 | syl2anc 693 |
. . . . . . . . . 10
|
| 38 | simprr 796 |
. . . . . . . . . 10
| |
| 39 | 37, 38 | ineq12d 3815 |
. . . . . . . . 9
|
| 40 | hlop 34649 |
. . . . . . . . . . . 12
| |
| 41 | 11, 40 | syl 17 |
. . . . . . . . . . 11
|
| 42 | 17, 32 | opoccl 34481 |
. . . . . . . . . . 11
|
| 43 | 41, 21, 42 | syl2anc 693 |
. . . . . . . . . 10
|
| 44 | 17, 31, 3, 4 | pmapmeet 35059 |
. . . . . . . . . 10
|
| 45 | 11, 43, 25, 44 | syl3anc 1326 |
. . . . . . . . 9
|
| 46 | 39, 45 | eqtr4d 2659 |
. . . . . . . 8
|
| 47 | 46 | fveq2d 6195 |
. . . . . . 7
|
| 48 | hllat 34650 |
. . . . . . . . . 10
| |
| 49 | 11, 48 | syl 17 |
. . . . . . . . 9
|
| 50 | 17, 31 | latmcl 17052 |
. . . . . . . . 9
|
| 51 | 49, 43, 25, 50 | syl3anc 1326 |
. . . . . . . 8
|
| 52 | 17, 32, 4, 5 | polpmapN 35198 |
. . . . . . . 8
|
| 53 | 11, 51, 52 | syl2anc 693 |
. . . . . . 7
|
| 54 | 47, 53 | eqtrd 2656 |
. . . . . 6
|
| 55 | 54, 38 | ineq12d 3815 |
. . . . 5
|
| 56 | 17, 32 | opoccl 34481 |
. . . . . . 7
|
| 57 | 41, 51, 56 | syl2anc 693 |
. . . . . 6
|
| 58 | 17, 31, 3, 4 | pmapmeet 35059 |
. . . . . 6
|
| 59 | 11, 57, 25, 58 | syl3anc 1326 |
. . . . 5
|
| 60 | 55, 59 | eqtr4d 2659 |
. . . 4
|
| 61 | 2, 3, 4, 5 | 2polvalN 35200 |
. . . . 5
|
| 62 | 11, 16, 61 | syl2anc 693 |
. . . 4
|
| 63 | 35, 60, 62 | 3eqtr4d 2666 |
. . 3
|
| 64 | 63 | ex 450 |
. 2
|
| 65 | 10, 64 | sylan2d 499 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-riotaBAD 34239 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-undef 7399 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-pmap 34790 df-polarityN 35189 |
| This theorem is referenced by: poml5N 35240 poml6N 35241 pexmidlem6N 35261 |
| Copyright terms: Public domain | W3C validator |