Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapmeet Structured version   Visualization version   Unicode version

Theorem pmapmeet 35059
Description: The projective map of a meet. (Contributed by NM, 25-Jan-2012.)
Hypotheses
Ref Expression
pmapmeet.b  |-  B  =  ( Base `  K
)
pmapmeet.m  |-  ./\  =  ( meet `  K )
pmapmeet.a  |-  A  =  ( Atoms `  K )
pmapmeet.p  |-  P  =  ( pmap `  K
)
Assertion
Ref Expression
pmapmeet  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( P `  ( X  ./\  Y ) )  =  ( ( P `
 X )  i^i  ( P `  Y
) ) )

Proof of Theorem pmapmeet
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4  |-  ( glb `  K )  =  ( glb `  K )
2 pmapmeet.m . . . 4  |-  ./\  =  ( meet `  K )
3 simp1 1061 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  HL )
4 simp2 1062 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
5 simp3 1063 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
61, 2, 3, 4, 5meetval 17019 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  =  ( ( glb `  K ) `
 { X ,  Y } ) )
76fveq2d 6195 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( P `  ( X  ./\  Y ) )  =  ( P `  ( ( glb `  K
) `  { X ,  Y } ) ) )
8 prssi 4353 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  { X ,  Y }  C_  B )
983adant1 1079 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  { X ,  Y }  C_  B )
10 prnzg 4311 . . . 4  |-  ( X  e.  B  ->  { X ,  Y }  =/=  (/) )
11103ad2ant2 1083 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  { X ,  Y }  =/=  (/) )
12 pmapmeet.b . . . 4  |-  B  =  ( Base `  K
)
13 pmapmeet.p . . . 4  |-  P  =  ( pmap `  K
)
1412, 1, 13pmapglb 35056 . . 3  |-  ( ( K  e.  HL  /\  { X ,  Y }  C_  B  /\  { X ,  Y }  =/=  (/) )  -> 
( P `  (
( glb `  K
) `  { X ,  Y } ) )  =  |^|_ x  e.  { X ,  Y } 
( P `  x
) )
153, 9, 11, 14syl3anc 1326 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( P `  (
( glb `  K
) `  { X ,  Y } ) )  =  |^|_ x  e.  { X ,  Y } 
( P `  x
) )
16 fveq2 6191 . . . 4  |-  ( x  =  X  ->  ( P `  x )  =  ( P `  X ) )
17 fveq2 6191 . . . 4  |-  ( x  =  Y  ->  ( P `  x )  =  ( P `  Y ) )
1816, 17iinxprg 4601 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  -> 
|^|_ x  e.  { X ,  Y }  ( P `
 x )  =  ( ( P `  X )  i^i  ( P `  Y )
) )
19183adant1 1079 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  -> 
|^|_ x  e.  { X ,  Y }  ( P `
 x )  =  ( ( P `  X )  i^i  ( P `  Y )
) )
207, 15, 193eqtrd 2660 1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( P `  ( X  ./\  Y ) )  =  ( ( P `
 X )  i^i  ( P `  Y
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    i^i cin 3573    C_ wss 3574   (/)c0 3915   {cpr 4179   |^|_ciin 4521   ` cfv 5888  (class class class)co 6650   Basecbs 15857   glbcglb 16943   meetcmee 16945   Atomscatm 34550   HLchlt 34637   pmapcpmap 34783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-poset 16946  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-lat 17046  df-clat 17108  df-ats 34554  df-hlat 34638  df-pmap 34790
This theorem is referenced by:  hlmod1i  35142  poldmj1N  35214  pmapj2N  35215  pnonsingN  35219  psubclinN  35234  poml4N  35239  pl42lem1N  35265  pl42lem2N  35266
  Copyright terms: Public domain W3C validator