MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1rlimmul Structured version   Visualization version   Unicode version

Theorem o1rlimmul 14349
Description: The product of an eventually bounded function and a function of limit zero has limit zero. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
o1rlimmul  |-  ( ( F  e.  O(1)  /\  G  ~~> r  0 )  -> 
( F  oF  x.  G )  ~~> r  0 )

Proof of Theorem o1rlimmul
Dummy variables  x  y  z  a  b  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1f 14260 . . . . 5  |-  ( F  e.  O(1)  ->  F : dom  F --> CC )
21adantr 481 . . . 4  |-  ( ( F  e.  O(1)  /\  G  ~~> r  0 )  ->  F : dom  F --> CC )
3 ffn 6045 . . . 4  |-  ( F : dom  F --> CC  ->  F  Fn  dom  F )
42, 3syl 17 . . 3  |-  ( ( F  e.  O(1)  /\  G  ~~> r  0 )  ->  F  Fn  dom  F )
5 rlimf 14232 . . . . 5  |-  ( G  ~~> r  0  ->  G : dom  G --> CC )
65adantl 482 . . . 4  |-  ( ( F  e.  O(1)  /\  G  ~~> r  0 )  ->  G : dom  G --> CC )
7 ffn 6045 . . . 4  |-  ( G : dom  G --> CC  ->  G  Fn  dom  G )
86, 7syl 17 . . 3  |-  ( ( F  e.  O(1)  /\  G  ~~> r  0 )  ->  G  Fn  dom  G )
9 o1dm 14261 . . . . 5  |-  ( F  e.  O(1)  ->  dom  F  C_  RR )
109adantr 481 . . . 4  |-  ( ( F  e.  O(1)  /\  G  ~~> r  0 )  ->  dom  F  C_  RR )
11 reex 10027 . . . 4  |-  RR  e.  _V
12 ssexg 4804 . . . 4  |-  ( ( dom  F  C_  RR  /\  RR  e.  _V )  ->  dom  F  e.  _V )
1310, 11, 12sylancl 694 . . 3  |-  ( ( F  e.  O(1)  /\  G  ~~> r  0 )  ->  dom  F  e.  _V )
14 rlimss 14233 . . . . 5  |-  ( G  ~~> r  0  ->  dom  G 
C_  RR )
1514adantl 482 . . . 4  |-  ( ( F  e.  O(1)  /\  G  ~~> r  0 )  ->  dom  G  C_  RR )
16 ssexg 4804 . . . 4  |-  ( ( dom  G  C_  RR  /\  RR  e.  _V )  ->  dom  G  e.  _V )
1715, 11, 16sylancl 694 . . 3  |-  ( ( F  e.  O(1)  /\  G  ~~> r  0 )  ->  dom  G  e.  _V )
18 eqid 2622 . . 3  |-  ( dom 
F  i^i  dom  G )  =  ( dom  F  i^i  dom  G )
19 eqidd 2623 . . 3  |-  ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  x  e.  dom  F )  ->  ( F `  x )  =  ( F `  x ) )
20 eqidd 2623 . . 3  |-  ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  x  e.  dom  G )  ->  ( G `  x )  =  ( G `  x ) )
214, 8, 13, 17, 18, 19, 20offval 6904 . 2  |-  ( ( F  e.  O(1)  /\  G  ~~> r  0 )  -> 
( F  oF  x.  G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x )  x.  ( G `  x
) ) ) )
22 o1bdd 14262 . . . . . . 7  |-  ( ( F  e.  O(1)  /\  F : dom  F --> CC )  ->  E. a  e.  RR  E. m  e.  RR  A. x  e.  dom  F ( a  <_  x  ->  ( abs `  ( F `
 x ) )  <_  m ) )
231, 22mpdan 702 . . . . . 6  |-  ( F  e.  O(1)  ->  E. a  e.  RR  E. m  e.  RR  A. x  e. 
dom  F ( a  <_  x  ->  ( abs `  ( F `  x ) )  <_  m ) )
2423ad2antrr 762 . . . . 5  |-  ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  ->  E. a  e.  RR  E. m  e.  RR  A. x  e.  dom  F ( a  <_  x  ->  ( abs `  ( F `
 x ) )  <_  m ) )
25 fvexd 6203 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  x  e.  dom  G )  ->  ( G `  x )  e.  _V )
2625ralrimiva 2966 . . . . . . . 8  |-  ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  ->  A. x  e.  dom  G ( G `
 x )  e. 
_V )
27 simplr 792 . . . . . . . . 9  |-  ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  ->  y  e.  RR+ )
28 recn 10026 . . . . . . . . . . . 12  |-  ( m  e.  RR  ->  m  e.  CC )
2928ad2antll 765 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  ->  m  e.  CC )
3029abscld 14175 . . . . . . . . . 10  |-  ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  ->  ( abs `  m )  e.  RR )
3129absge0d 14183 . . . . . . . . . 10  |-  ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  ->  0  <_  ( abs `  m ) )
3230, 31ge0p1rpd 11902 . . . . . . . . 9  |-  ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  ->  ( ( abs `  m )  +  1 )  e.  RR+ )
3327, 32rpdivcld 11889 . . . . . . . 8  |-  ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  ->  ( y  /  ( ( abs `  m )  +  1 ) )  e.  RR+ )
346feqmptd 6249 . . . . . . . . . 10  |-  ( ( F  e.  O(1)  /\  G  ~~> r  0 )  ->  G  =  ( x  e.  dom  G  |->  ( G `
 x ) ) )
35 simpr 477 . . . . . . . . . 10  |-  ( ( F  e.  O(1)  /\  G  ~~> r  0 )  ->  G 
~~> r  0 )
3634, 35eqbrtrrd 4677 . . . . . . . . 9  |-  ( ( F  e.  O(1)  /\  G  ~~> r  0 )  -> 
( x  e.  dom  G 
|->  ( G `  x
) )  ~~> r  0 )
3736ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  ->  ( x  e.  dom  G  |->  ( G `
 x ) )  ~~> r  0 )
3826, 33, 37rlimi 14244 . . . . . . 7  |-  ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  ->  E. b  e.  RR  A. x  e. 
dom  G ( b  <_  x  ->  ( abs `  ( ( G `
 x )  - 
0 ) )  < 
( y  /  (
( abs `  m
)  +  1 ) ) ) )
39 inss1 3833 . . . . . . . . . . . . . 14  |-  ( dom 
F  i^i  dom  G ) 
C_  dom  F
40 ssralv 3666 . . . . . . . . . . . . . 14  |-  ( ( dom  F  i^i  dom  G )  C_  dom  F  -> 
( A. x  e. 
dom  F ( a  <_  x  ->  ( abs `  ( F `  x ) )  <_  m )  ->  A. x  e.  ( dom  F  i^i  dom 
G ) ( a  <_  x  ->  ( abs `  ( F `  x ) )  <_  m ) ) )
4139, 40ax-mp 5 . . . . . . . . . . . . 13  |-  ( A. x  e.  dom  F ( a  <_  x  ->  ( abs `  ( F `
 x ) )  <_  m )  ->  A. x  e.  ( dom  F  i^i  dom  G
) ( a  <_  x  ->  ( abs `  ( F `  x )
)  <_  m )
)
42 inss2 3834 . . . . . . . . . . . . . 14  |-  ( dom 
F  i^i  dom  G ) 
C_  dom  G
43 ssralv 3666 . . . . . . . . . . . . . 14  |-  ( ( dom  F  i^i  dom  G )  C_  dom  G  -> 
( A. x  e. 
dom  G ( b  <_  x  ->  ( abs `  ( ( G `
 x )  - 
0 ) )  < 
( y  /  (
( abs `  m
)  +  1 ) ) )  ->  A. x  e.  ( dom  F  i^i  dom 
G ) ( b  <_  x  ->  ( abs `  ( ( G `
 x )  - 
0 ) )  < 
( y  /  (
( abs `  m
)  +  1 ) ) ) ) )
4442, 43ax-mp 5 . . . . . . . . . . . . 13  |-  ( A. x  e.  dom  G ( b  <_  x  ->  ( abs `  ( ( G `  x )  -  0 ) )  <  ( y  / 
( ( abs `  m
)  +  1 ) ) )  ->  A. x  e.  ( dom  F  i^i  dom 
G ) ( b  <_  x  ->  ( abs `  ( ( G `
 x )  - 
0 ) )  < 
( y  /  (
( abs `  m
)  +  1 ) ) ) )
4541, 44anim12i 590 . . . . . . . . . . . 12  |-  ( ( A. x  e.  dom  F ( a  <_  x  ->  ( abs `  ( F `  x )
)  <_  m )  /\  A. x  e.  dom  G ( b  <_  x  ->  ( abs `  (
( G `  x
)  -  0 ) )  <  ( y  /  ( ( abs `  m )  +  1 ) ) ) )  ->  ( A. x  e.  ( dom  F  i^i  dom 
G ) ( a  <_  x  ->  ( abs `  ( F `  x ) )  <_  m )  /\  A. x  e.  ( dom  F  i^i  dom  G )
( b  <_  x  ->  ( abs `  (
( G `  x
)  -  0 ) )  <  ( y  /  ( ( abs `  m )  +  1 ) ) ) ) )
46 r19.26 3064 . . . . . . . . . . . 12  |-  ( A. x  e.  ( dom  F  i^i  dom  G )
( ( a  <_  x  ->  ( abs `  ( F `  x )
)  <_  m )  /\  ( b  <_  x  ->  ( abs `  (
( G `  x
)  -  0 ) )  <  ( y  /  ( ( abs `  m )  +  1 ) ) ) )  <-> 
( A. x  e.  ( dom  F  i^i  dom 
G ) ( a  <_  x  ->  ( abs `  ( F `  x ) )  <_  m )  /\  A. x  e.  ( dom  F  i^i  dom  G )
( b  <_  x  ->  ( abs `  (
( G `  x
)  -  0 ) )  <  ( y  /  ( ( abs `  m )  +  1 ) ) ) ) )
4745, 46sylibr 224 . . . . . . . . . . 11  |-  ( ( A. x  e.  dom  F ( a  <_  x  ->  ( abs `  ( F `  x )
)  <_  m )  /\  A. x  e.  dom  G ( b  <_  x  ->  ( abs `  (
( G `  x
)  -  0 ) )  <  ( y  /  ( ( abs `  m )  +  1 ) ) ) )  ->  A. x  e.  ( dom  F  i^i  dom  G ) ( ( a  <_  x  ->  ( abs `  ( F `  x ) )  <_  m )  /\  (
b  <_  x  ->  ( abs `  ( ( G `  x )  -  0 ) )  <  ( y  / 
( ( abs `  m
)  +  1 ) ) ) ) )
48 prth 595 . . . . . . . . . . . 12  |-  ( ( ( a  <_  x  ->  ( abs `  ( F `  x )
)  <_  m )  /\  ( b  <_  x  ->  ( abs `  (
( G `  x
)  -  0 ) )  <  ( y  /  ( ( abs `  m )  +  1 ) ) ) )  ->  ( ( a  <_  x  /\  b  <_  x )  ->  (
( abs `  ( F `  x )
)  <_  m  /\  ( abs `  ( ( G `  x )  -  0 ) )  <  ( y  / 
( ( abs `  m
)  +  1 ) ) ) ) )
4948ralimi 2952 . . . . . . . . . . 11  |-  ( A. x  e.  ( dom  F  i^i  dom  G )
( ( a  <_  x  ->  ( abs `  ( F `  x )
)  <_  m )  /\  ( b  <_  x  ->  ( abs `  (
( G `  x
)  -  0 ) )  <  ( y  /  ( ( abs `  m )  +  1 ) ) ) )  ->  A. x  e.  ( dom  F  i^i  dom  G ) ( ( a  <_  x  /\  b  <_  x )  ->  (
( abs `  ( F `  x )
)  <_  m  /\  ( abs `  ( ( G `  x )  -  0 ) )  <  ( y  / 
( ( abs `  m
)  +  1 ) ) ) ) )
5047, 49syl 17 . . . . . . . . . 10  |-  ( ( A. x  e.  dom  F ( a  <_  x  ->  ( abs `  ( F `  x )
)  <_  m )  /\  A. x  e.  dom  G ( b  <_  x  ->  ( abs `  (
( G `  x
)  -  0 ) )  <  ( y  /  ( ( abs `  m )  +  1 ) ) ) )  ->  A. x  e.  ( dom  F  i^i  dom  G ) ( ( a  <_  x  /\  b  <_  x )  ->  (
( abs `  ( F `  x )
)  <_  m  /\  ( abs `  ( ( G `  x )  -  0 ) )  <  ( y  / 
( ( abs `  m
)  +  1 ) ) ) ) )
51 simplrl 800 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  a  e.  RR )
52 simprl 794 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  b  e.  RR )
5339, 10syl5ss 3614 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  O(1)  /\  G  ~~> r  0 )  -> 
( dom  F  i^i  dom 
G )  C_  RR )
5453ad3antrrr 766 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( dom  F  i^i  dom  G )  C_  RR )
55 simprr 796 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  x  e.  ( dom  F  i^i  dom  G ) )
5654, 55sseldd 3604 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  x  e.  RR )
57 maxle 12022 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  RR  /\  b  e.  RR  /\  x  e.  RR )  ->  ( if ( a  <_  b ,  b ,  a )  <_  x  <->  ( a  <_  x  /\  b  <_  x ) ) )
5851, 52, 56, 57syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( if ( a  <_  b , 
b ,  a )  <_  x  <->  ( a  <_  x  /\  b  <_  x ) ) )
5958biimpd 219 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( if ( a  <_  b , 
b ,  a )  <_  x  ->  (
a  <_  x  /\  b  <_  x ) ) )
606ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  G : dom  G --> CC )
6142sseli 3599 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( dom  F  i^i  dom  G )  ->  x  e.  dom  G )
6261ad2antll 765 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  x  e.  dom  G )
6360, 62ffvelrnd 6360 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( G `  x )  e.  CC )
6463subid1d 10381 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( G `
 x )  - 
0 )  =  ( G `  x ) )
6564fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( abs `  (
( G `  x
)  -  0 ) )  =  ( abs `  ( G `  x
) ) )
6665breq1d 4663 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( abs `  ( ( G `  x )  -  0 ) )  <  (
y  /  ( ( abs `  m )  +  1 ) )  <-> 
( abs `  ( G `  x )
)  <  ( y  /  ( ( abs `  m )  +  1 ) ) ) )
6763abscld 14175 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( abs `  ( G `  x )
)  e.  RR )
6833adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( y  / 
( ( abs `  m
)  +  1 ) )  e.  RR+ )
6968rpred 11872 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( y  / 
( ( abs `  m
)  +  1 ) )  e.  RR )
70 ltle 10126 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( abs `  ( G `  x )
)  e.  RR  /\  ( y  /  (
( abs `  m
)  +  1 ) )  e.  RR )  ->  ( ( abs `  ( G `  x
) )  <  (
y  /  ( ( abs `  m )  +  1 ) )  ->  ( abs `  ( G `  x )
)  <_  ( y  /  ( ( abs `  m )  +  1 ) ) ) )
7167, 69, 70syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( abs `  ( G `  x
) )  <  (
y  /  ( ( abs `  m )  +  1 ) )  ->  ( abs `  ( G `  x )
)  <_  ( y  /  ( ( abs `  m )  +  1 ) ) ) )
7266, 71sylbid 230 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( abs `  ( ( G `  x )  -  0 ) )  <  (
y  /  ( ( abs `  m )  +  1 ) )  ->  ( abs `  ( G `  x )
)  <_  ( y  /  ( ( abs `  m )  +  1 ) ) ) )
7372anim2d 589 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( ( abs `  ( F `
 x ) )  <_  m  /\  ( abs `  ( ( G `
 x )  - 
0 ) )  < 
( y  /  (
( abs `  m
)  +  1 ) ) )  ->  (
( abs `  ( F `  x )
)  <_  m  /\  ( abs `  ( G `
 x ) )  <_  ( y  / 
( ( abs `  m
)  +  1 ) ) ) ) )
742ad3antrrr 766 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  F : dom  F --> CC )
7539sseli 3599 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( dom  F  i^i  dom  G )  ->  x  e.  dom  F )
7675ad2antll 765 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  x  e.  dom  F )
7774, 76ffvelrnd 6360 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( F `  x )  e.  CC )
7877abscld 14175 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( abs `  ( F `  x )
)  e.  RR )
7977absge0d 14183 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  0  <_  ( abs `  ( F `  x ) ) )
8078, 79jca 554 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( abs `  ( F `  x
) )  e.  RR  /\  0  <_  ( abs `  ( F `  x
) ) ) )
81 simplrr 801 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  m  e.  RR )
8263absge0d 14183 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  0  <_  ( abs `  ( G `  x ) ) )
8367, 82jca 554 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( abs `  ( G `  x
) )  e.  RR  /\  0  <_  ( abs `  ( G `  x
) ) ) )
84 lemul12a 10881 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( abs `  ( F `  x
) )  e.  RR  /\  0  <_  ( abs `  ( F `  x
) ) )  /\  m  e.  RR )  /\  ( ( ( abs `  ( G `  x
) )  e.  RR  /\  0  <_  ( abs `  ( G `  x
) ) )  /\  ( y  /  (
( abs `  m
)  +  1 ) )  e.  RR ) )  ->  ( (
( abs `  ( F `  x )
)  <_  m  /\  ( abs `  ( G `
 x ) )  <_  ( y  / 
( ( abs `  m
)  +  1 ) ) )  ->  (
( abs `  ( F `  x )
)  x.  ( abs `  ( G `  x
) ) )  <_ 
( m  x.  (
y  /  ( ( abs `  m )  +  1 ) ) ) ) )
8580, 81, 83, 69, 84syl22anc 1327 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( ( abs `  ( F `
 x ) )  <_  m  /\  ( abs `  ( G `  x ) )  <_ 
( y  /  (
( abs `  m
)  +  1 ) ) )  ->  (
( abs `  ( F `  x )
)  x.  ( abs `  ( G `  x
) ) )  <_ 
( m  x.  (
y  /  ( ( abs `  m )  +  1 ) ) ) ) )
8677, 63absmuld 14193 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  =  ( ( abs `  ( F `
 x ) )  x.  ( abs `  ( G `  x )
) ) )
8786breq1d 4663 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( abs `  ( ( F `  x )  x.  ( G `  x )
) )  <_  (
m  x.  ( y  /  ( ( abs `  m )  +  1 ) ) )  <->  ( ( abs `  ( F `  x ) )  x.  ( abs `  ( G `  x )
) )  <_  (
m  x.  ( y  /  ( ( abs `  m )  +  1 ) ) ) ) )
8881recnd 10068 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  m  e.  CC )
8927adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  y  e.  RR+ )
9089rpcnd 11874 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  y  e.  CC )
9132adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( abs `  m )  +  1 )  e.  RR+ )
9291rpcnd 11874 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( abs `  m )  +  1 )  e.  CC )
9391rpne0d 11877 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( abs `  m )  +  1 )  =/=  0 )
9488, 90, 92, 93divassd 10836 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( m  x.  y )  / 
( ( abs `  m
)  +  1 ) )  =  ( m  x.  ( y  / 
( ( abs `  m
)  +  1 ) ) ) )
95 peano2re 10209 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( abs `  m )  e.  RR  ->  (
( abs `  m
)  +  1 )  e.  RR )
9630, 95syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  ->  ( ( abs `  m )  +  1 )  e.  RR )
9796adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( abs `  m )  +  1 )  e.  RR )
9830adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( abs `  m
)  e.  RR )
9981leabsd 14153 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  m  <_  ( abs `  m ) )
10098ltp1d 10954 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( abs `  m
)  <  ( ( abs `  m )  +  1 ) )
10181, 98, 97, 99, 100lelttrd 10195 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  m  <  (
( abs `  m
)  +  1 ) )
10281, 97, 89, 101ltmul1dd 11927 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( m  x.  y )  <  (
( ( abs `  m
)  +  1 )  x.  y ) )
10389rpred 11872 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  y  e.  RR )
10481, 103remulcld 10070 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( m  x.  y )  e.  RR )
105104, 103, 91ltdivmuld 11923 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( ( m  x.  y )  /  ( ( abs `  m )  +  1 ) )  <  y  <->  ( m  x.  y )  <  ( ( ( abs `  m )  +  1 )  x.  y ) ) )
106102, 105mpbird 247 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( m  x.  y )  / 
( ( abs `  m
)  +  1 ) )  <  y )
10794, 106eqbrtrrd 4677 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( m  x.  ( y  /  (
( abs `  m
)  +  1 ) ) )  <  y
)
10877, 63mulcld 10060 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( F `
 x )  x.  ( G `  x
) )  e.  CC )
109108abscld 14175 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  e.  RR )
11081, 69remulcld 10070 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( m  x.  ( y  /  (
( abs `  m
)  +  1 ) ) )  e.  RR )
111 lelttr 10128 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  e.  RR  /\  ( m  x.  (
y  /  ( ( abs `  m )  +  1 ) ) )  e.  RR  /\  y  e.  RR )  ->  ( ( ( abs `  ( ( F `  x )  x.  ( G `  x )
) )  <_  (
m  x.  ( y  /  ( ( abs `  m )  +  1 ) ) )  /\  ( m  x.  (
y  /  ( ( abs `  m )  +  1 ) ) )  <  y )  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) )
112109, 110, 103, 111syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( ( abs `  ( ( F `  x )  x.  ( G `  x ) ) )  <_  ( m  x.  ( y  /  (
( abs `  m
)  +  1 ) ) )  /\  (
m  x.  ( y  /  ( ( abs `  m )  +  1 ) ) )  < 
y )  ->  ( abs `  ( ( F `
 x )  x.  ( G `  x
) ) )  < 
y ) )
113107, 112mpan2d 710 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( abs `  ( ( F `  x )  x.  ( G `  x )
) )  <_  (
m  x.  ( y  /  ( ( abs `  m )  +  1 ) ) )  -> 
( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) )
11487, 113sylbird 250 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( ( abs `  ( F `
 x ) )  x.  ( abs `  ( G `  x )
) )  <_  (
m  x.  ( y  /  ( ( abs `  m )  +  1 ) ) )  -> 
( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) )
11573, 85, 1143syld 60 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( ( abs `  ( F `
 x ) )  <_  m  /\  ( abs `  ( ( G `
 x )  - 
0 ) )  < 
( y  /  (
( abs `  m
)  +  1 ) ) )  ->  ( abs `  ( ( F `
 x )  x.  ( G `  x
) ) )  < 
y ) )
11659, 115imim12d 81 . . . . . . . . . . . . 13  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  ( b  e.  RR  /\  x  e.  ( dom  F  i^i  dom 
G ) ) )  ->  ( ( ( a  <_  x  /\  b  <_  x )  -> 
( ( abs `  ( F `  x )
)  <_  m  /\  ( abs `  ( ( G `  x )  -  0 ) )  <  ( y  / 
( ( abs `  m
)  +  1 ) ) ) )  -> 
( if ( a  <_  b ,  b ,  a )  <_  x  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) ) )
117116anassrs 680 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  ( a  e.  RR  /\  m  e.  RR ) )  /\  b  e.  RR )  /\  x  e.  ( dom  F  i^i  dom 
G ) )  -> 
( ( ( a  <_  x  /\  b  <_  x )  ->  (
( abs `  ( F `  x )
)  <_  m  /\  ( abs `  ( ( G `  x )  -  0 ) )  <  ( y  / 
( ( abs `  m
)  +  1 ) ) ) )  -> 
( if ( a  <_  b ,  b ,  a )  <_  x  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) ) )
118117ralimdva 2962 . . . . . . . . . . 11  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  b  e.  RR )  ->  ( A. x  e.  ( dom  F  i^i  dom  G )
( ( a  <_  x  /\  b  <_  x
)  ->  ( ( abs `  ( F `  x ) )  <_  m  /\  ( abs `  (
( G `  x
)  -  0 ) )  <  ( y  /  ( ( abs `  m )  +  1 ) ) ) )  ->  A. x  e.  ( dom  F  i^i  dom  G ) ( if ( a  <_  b , 
b ,  a )  <_  x  ->  ( abs `  ( ( F `
 x )  x.  ( G `  x
) ) )  < 
y ) ) )
119 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  b  e.  RR )  ->  b  e.  RR )
120 simplrl 800 . . . . . . . . . . . 12  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  b  e.  RR )  ->  a  e.  RR )
121119, 120ifcld 4131 . . . . . . . . . . 11  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  b  e.  RR )  ->  if ( a  <_  b , 
b ,  a )  e.  RR )
122118, 121jctild 566 . . . . . . . . . 10  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  b  e.  RR )  ->  ( A. x  e.  ( dom  F  i^i  dom  G )
( ( a  <_  x  /\  b  <_  x
)  ->  ( ( abs `  ( F `  x ) )  <_  m  /\  ( abs `  (
( G `  x
)  -  0 ) )  <  ( y  /  ( ( abs `  m )  +  1 ) ) ) )  ->  ( if ( a  <_  b , 
b ,  a )  e.  RR  /\  A. x  e.  ( dom  F  i^i  dom  G )
( if ( a  <_  b ,  b ,  a )  <_  x  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) ) ) )
123 breq1 4656 . . . . . . . . . . . . 13  |-  ( z  =  if ( a  <_  b ,  b ,  a )  -> 
( z  <_  x  <->  if ( a  <_  b ,  b ,  a )  <_  x )
)
124123imbi1d 331 . . . . . . . . . . . 12  |-  ( z  =  if ( a  <_  b ,  b ,  a )  -> 
( ( z  <_  x  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y )  <-> 
( if ( a  <_  b ,  b ,  a )  <_  x  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) ) )
125124ralbidv 2986 . . . . . . . . . . 11  |-  ( z  =  if ( a  <_  b ,  b ,  a )  -> 
( A. x  e.  ( dom  F  i^i  dom 
G ) ( z  <_  x  ->  ( abs `  ( ( F `
 x )  x.  ( G `  x
) ) )  < 
y )  <->  A. x  e.  ( dom  F  i^i  dom 
G ) ( if ( a  <_  b ,  b ,  a )  <_  x  ->  ( abs `  ( ( F `  x )  x.  ( G `  x ) ) )  <  y ) ) )
126125rspcev 3309 . . . . . . . . . 10  |-  ( ( if ( a  <_ 
b ,  b ,  a )  e.  RR  /\ 
A. x  e.  ( dom  F  i^i  dom  G ) ( if ( a  <_  b , 
b ,  a )  <_  x  ->  ( abs `  ( ( F `
 x )  x.  ( G `  x
) ) )  < 
y ) )  ->  E. z  e.  RR  A. x  e.  ( dom 
F  i^i  dom  G ) ( z  <_  x  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) )
12750, 122, 126syl56 36 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  b  e.  RR )  ->  ( ( A. x  e.  dom  F ( a  <_  x  ->  ( abs `  ( F `  x )
)  <_  m )  /\  A. x  e.  dom  G ( b  <_  x  ->  ( abs `  (
( G `  x
)  -  0 ) )  <  ( y  /  ( ( abs `  m )  +  1 ) ) ) )  ->  E. z  e.  RR  A. x  e.  ( dom 
F  i^i  dom  G ) ( z  <_  x  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) ) )
128127expcomd 454 . . . . . . . 8  |-  ( ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  /\  b  e.  RR )  ->  ( A. x  e.  dom  G ( b  <_  x  ->  ( abs `  ( ( G `  x )  -  0 ) )  <  ( y  / 
( ( abs `  m
)  +  1 ) ) )  ->  ( A. x  e.  dom  F ( a  <_  x  ->  ( abs `  ( F `  x )
)  <_  m )  ->  E. z  e.  RR  A. x  e.  ( dom 
F  i^i  dom  G ) ( z  <_  x  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) ) ) )
129128rexlimdva 3031 . . . . . . 7  |-  ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  ->  ( E. b  e.  RR  A. x  e.  dom  G ( b  <_  x  ->  ( abs `  ( ( G `
 x )  - 
0 ) )  < 
( y  /  (
( abs `  m
)  +  1 ) ) )  ->  ( A. x  e.  dom  F ( a  <_  x  ->  ( abs `  ( F `  x )
)  <_  m )  ->  E. z  e.  RR  A. x  e.  ( dom 
F  i^i  dom  G ) ( z  <_  x  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) ) ) )
13038, 129mpd 15 . . . . . 6  |-  ( ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  /\  (
a  e.  RR  /\  m  e.  RR )
)  ->  ( A. x  e.  dom  F ( a  <_  x  ->  ( abs `  ( F `
 x ) )  <_  m )  ->  E. z  e.  RR  A. x  e.  ( dom 
F  i^i  dom  G ) ( z  <_  x  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) ) )
131130rexlimdvva 3038 . . . . 5  |-  ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  ->  ( E. a  e.  RR  E. m  e.  RR  A. x  e. 
dom  F ( a  <_  x  ->  ( abs `  ( F `  x ) )  <_  m )  ->  E. z  e.  RR  A. x  e.  ( dom  F  i^i  dom 
G ) ( z  <_  x  ->  ( abs `  ( ( F `
 x )  x.  ( G `  x
) ) )  < 
y ) ) )
13224, 131mpd 15 . . . 4  |-  ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  y  e.  RR+ )  ->  E. z  e.  RR  A. x  e.  ( dom 
F  i^i  dom  G ) ( z  <_  x  ->  ( abs `  (
( F `  x
)  x.  ( G `
 x ) ) )  <  y ) )
133132ralrimiva 2966 . . 3  |-  ( ( F  e.  O(1)  /\  G  ~~> r  0 )  ->  A. y  e.  RR+  E. z  e.  RR  A. x  e.  ( dom  F  i^i  dom 
G ) ( z  <_  x  ->  ( abs `  ( ( F `
 x )  x.  ( G `  x
) ) )  < 
y ) )
134 ffvelrn 6357 . . . . . . 7  |-  ( ( F : dom  F --> CC  /\  x  e.  dom  F )  ->  ( F `  x )  e.  CC )
1352, 75, 134syl2an 494 . . . . . 6  |-  ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  ( F `  x )  e.  CC )
136 ffvelrn 6357 . . . . . . 7  |-  ( ( G : dom  G --> CC  /\  x  e.  dom  G )  ->  ( G `  x )  e.  CC )
1376, 61, 136syl2an 494 . . . . . 6  |-  ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  ( G `  x )  e.  CC )
138135, 137mulcld 10060 . . . . 5  |-  ( ( ( F  e.  O(1)  /\  G  ~~> r  0 )  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
( F `  x
)  x.  ( G `
 x ) )  e.  CC )
139138ralrimiva 2966 . . . 4  |-  ( ( F  e.  O(1)  /\  G  ~~> r  0 )  ->  A. x  e.  ( dom  F  i^i  dom  G
) ( ( F `
 x )  x.  ( G `  x
) )  e.  CC )
140139, 53rlim0 14239 . . 3  |-  ( ( F  e.  O(1)  /\  G  ~~> r  0 )  -> 
( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  x )  x.  ( G `  x ) ) )  ~~> r  0  <->  A. y  e.  RR+  E. z  e.  RR  A. x  e.  ( dom  F  i^i  dom 
G ) ( z  <_  x  ->  ( abs `  ( ( F `
 x )  x.  ( G `  x
) ) )  < 
y ) ) )
141133, 140mpbird 247 . 2  |-  ( ( F  e.  O(1)  /\  G  ~~> r  0 )  -> 
( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x )  x.  ( G `  x
) ) )  ~~> r  0 )
14221, 141eqbrtrd 4675 1  |-  ( ( F  e.  O(1)  /\  G  ~~> r  0 )  -> 
( F  oF  x.  G )  ~~> r  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   RR+crp 11832   abscabs 13974    ~~> r crli 14216   O(1)co1 14217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-rlim 14220  df-o1 14221
This theorem is referenced by:  chtppilimlem2  25163  chpchtlim  25168
  Copyright terms: Public domain W3C validator