Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubclinN Structured version   Visualization version   Unicode version

Theorem psubclinN 35234
Description: The intersection of two closed subspaces is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypothesis
Ref Expression
psubclin.c  |-  C  =  ( PSubCl `  K )
Assertion
Ref Expression
psubclinN  |-  ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  ->  ( X  i^i  Y
)  e.  C )

Proof of Theorem psubclinN
StepHypRef Expression
1 simp1 1061 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  ->  K  e.  HL )
2 hlclat 34645 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  CLat )
323ad2ant1 1082 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  ->  K  e.  CLat )
4 eqid 2622 . . . . . . . 8  |-  ( Atoms `  K )  =  (
Atoms `  K )
5 psubclin.c . . . . . . . 8  |-  C  =  ( PSubCl `  K )
64, 5psubclssatN 35227 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  C )  ->  X  C_  ( Atoms `  K ) )
763adant3 1081 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  ->  X  C_  ( Atoms `  K ) )
8 eqid 2622 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
98, 4atssbase 34577 . . . . . 6  |-  ( Atoms `  K )  C_  ( Base `  K )
107, 9syl6ss 3615 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  ->  X  C_  ( Base `  K ) )
11 eqid 2622 . . . . . 6  |-  ( lub `  K )  =  ( lub `  K )
128, 11clatlubcl 17112 . . . . 5  |-  ( ( K  e.  CLat  /\  X  C_  ( Base `  K
) )  ->  (
( lub `  K
) `  X )  e.  ( Base `  K
) )
133, 10, 12syl2anc 693 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  ->  ( ( lub `  K
) `  X )  e.  ( Base `  K
) )
144, 5psubclssatN 35227 . . . . . . 7  |-  ( ( K  e.  HL  /\  Y  e.  C )  ->  Y  C_  ( Atoms `  K ) )
15143adant2 1080 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  ->  Y  C_  ( Atoms `  K ) )
1615, 9syl6ss 3615 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  ->  Y  C_  ( Base `  K ) )
178, 11clatlubcl 17112 . . . . 5  |-  ( ( K  e.  CLat  /\  Y  C_  ( Base `  K
) )  ->  (
( lub `  K
) `  Y )  e.  ( Base `  K
) )
183, 16, 17syl2anc 693 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  ->  ( ( lub `  K
) `  Y )  e.  ( Base `  K
) )
19 eqid 2622 . . . . 5  |-  ( meet `  K )  =  (
meet `  K )
20 eqid 2622 . . . . 5  |-  ( pmap `  K )  =  (
pmap `  K )
218, 19, 4, 20pmapmeet 35059 . . . 4  |-  ( ( K  e.  HL  /\  ( ( lub `  K
) `  X )  e.  ( Base `  K
)  /\  ( ( lub `  K ) `  Y )  e.  (
Base `  K )
)  ->  ( ( pmap `  K ) `  ( ( ( lub `  K ) `  X
) ( meet `  K
) ( ( lub `  K ) `  Y
) ) )  =  ( ( ( pmap `  K ) `  (
( lub `  K
) `  X )
)  i^i  ( ( pmap `  K ) `  ( ( lub `  K
) `  Y )
) ) )
221, 13, 18, 21syl3anc 1326 . . 3  |-  ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  ->  ( ( pmap `  K
) `  ( (
( lub `  K
) `  X )
( meet `  K )
( ( lub `  K
) `  Y )
) )  =  ( ( ( pmap `  K
) `  ( ( lub `  K ) `  X ) )  i^i  ( ( pmap `  K
) `  ( ( lub `  K ) `  Y ) ) ) )
2311, 20, 5pmapidclN 35228 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  C )  ->  ( ( pmap `  K
) `  ( ( lub `  K ) `  X ) )  =  X )
24233adant3 1081 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  ->  ( ( pmap `  K
) `  ( ( lub `  K ) `  X ) )  =  X )
2511, 20, 5pmapidclN 35228 . . . . 5  |-  ( ( K  e.  HL  /\  Y  e.  C )  ->  ( ( pmap `  K
) `  ( ( lub `  K ) `  Y ) )  =  Y )
26253adant2 1080 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  ->  ( ( pmap `  K
) `  ( ( lub `  K ) `  Y ) )  =  Y )
2724, 26ineq12d 3815 . . 3  |-  ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  ->  ( ( ( pmap `  K ) `  (
( lub `  K
) `  X )
)  i^i  ( ( pmap `  K ) `  ( ( lub `  K
) `  Y )
) )  =  ( X  i^i  Y ) )
2822, 27eqtrd 2656 . 2  |-  ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  ->  ( ( pmap `  K
) `  ( (
( lub `  K
) `  X )
( meet `  K )
( ( lub `  K
) `  Y )
) )  =  ( X  i^i  Y ) )
29 hllat 34650 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
30293ad2ant1 1082 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  ->  K  e.  Lat )
318, 19latmcl 17052 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( lub `  K
) `  X )  e.  ( Base `  K
)  /\  ( ( lub `  K ) `  Y )  e.  (
Base `  K )
)  ->  ( (
( lub `  K
) `  X )
( meet `  K )
( ( lub `  K
) `  Y )
)  e.  ( Base `  K ) )
3230, 13, 18, 31syl3anc 1326 . . 3  |-  ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  ->  ( ( ( lub `  K ) `  X
) ( meet `  K
) ( ( lub `  K ) `  Y
) )  e.  (
Base `  K )
)
338, 20, 5pmapsubclN 35232 . . 3  |-  ( ( K  e.  HL  /\  ( ( ( lub `  K ) `  X
) ( meet `  K
) ( ( lub `  K ) `  Y
) )  e.  (
Base `  K )
)  ->  ( ( pmap `  K ) `  ( ( ( lub `  K ) `  X
) ( meet `  K
) ( ( lub `  K ) `  Y
) ) )  e.  C )
341, 32, 33syl2anc 693 . 2  |-  ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  ->  ( ( pmap `  K
) `  ( (
( lub `  K
) `  X )
( meet `  K )
( ( lub `  K
) `  Y )
) )  e.  C
)
3528, 34eqeltrrd 2702 1  |-  ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  ->  ( X  i^i  Y
)  e.  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lubclub 16942   meetcmee 16945   Latclat 17045   CLatccla 17107   Atomscatm 34550   HLchlt 34637   pmapcpmap 34783   PSubClcpscN 35220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-undef 7399  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-pmap 34790  df-polarityN 35189  df-psubclN 35221
This theorem is referenced by:  osumcllem9N  35250
  Copyright terms: Public domain W3C validator