| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ispsubcl2N | Structured version Visualization version Unicode version | ||
| Description: Alternate predicate for "is a closed projective subspace". Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pmapsubcl.b |
|
| pmapsubcl.m |
|
| pmapsubcl.c |
|
| Ref | Expression |
|---|---|
| ispsubcl2N |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 |
. . 3
| |
| 2 | eqid 2622 |
. . 3
| |
| 3 | pmapsubcl.c |
. . 3
| |
| 4 | 1, 2, 3 | ispsubclN 35223 |
. 2
|
| 5 | hlop 34649 |
. . . . . . . . 9
| |
| 6 | 5 | adantr 481 |
. . . . . . . 8
|
| 7 | hlclat 34645 |
. . . . . . . . . 10
| |
| 8 | 7 | adantr 481 |
. . . . . . . . 9
|
| 9 | 1, 2 | polssatN 35194 |
. . . . . . . . . 10
|
| 10 | pmapsubcl.b |
. . . . . . . . . . 11
| |
| 11 | 10, 1 | atssbase 34577 |
. . . . . . . . . 10
|
| 12 | 9, 11 | syl6ss 3615 |
. . . . . . . . 9
|
| 13 | eqid 2622 |
. . . . . . . . . 10
| |
| 14 | 10, 13 | clatlubcl 17112 |
. . . . . . . . 9
|
| 15 | 8, 12, 14 | syl2anc 693 |
. . . . . . . 8
|
| 16 | eqid 2622 |
. . . . . . . . 9
| |
| 17 | 10, 16 | opoccl 34481 |
. . . . . . . 8
|
| 18 | 6, 15, 17 | syl2anc 693 |
. . . . . . 7
|
| 19 | 18 | ex 450 |
. . . . . 6
|
| 20 | 19 | adantrd 484 |
. . . . 5
|
| 21 | pmapsubcl.m |
. . . . . . . . . 10
| |
| 22 | 13, 16, 1, 21, 2 | polval2N 35192 |
. . . . . . . . 9
|
| 23 | 9, 22 | syldan 487 |
. . . . . . . 8
|
| 24 | 23 | ex 450 |
. . . . . . 7
|
| 25 | eqeq1 2626 |
. . . . . . . 8
| |
| 26 | 25 | biimpcd 239 |
. . . . . . 7
|
| 27 | 24, 26 | syl6 35 |
. . . . . 6
|
| 28 | 27 | impd 447 |
. . . . 5
|
| 29 | 20, 28 | jcad 555 |
. . . 4
|
| 30 | fveq2 6191 |
. . . . . 6
| |
| 31 | 30 | eqeq2d 2632 |
. . . . 5
|
| 32 | 31 | rspcev 3309 |
. . . 4
|
| 33 | 29, 32 | syl6 35 |
. . 3
|
| 34 | 10, 1, 21 | pmapssat 35045 |
. . . . 5
|
| 35 | 10, 21, 2 | 2polpmapN 35199 |
. . . . 5
|
| 36 | sseq1 3626 |
. . . . . . 7
| |
| 37 | fveq2 6191 |
. . . . . . . . 9
| |
| 38 | 37 | fveq2d 6195 |
. . . . . . . 8
|
| 39 | id 22 |
. . . . . . . 8
| |
| 40 | 38, 39 | eqeq12d 2637 |
. . . . . . 7
|
| 41 | 36, 40 | anbi12d 747 |
. . . . . 6
|
| 42 | 41 | biimprcd 240 |
. . . . 5
|
| 43 | 34, 35, 42 | syl2anc 693 |
. . . 4
|
| 44 | 43 | rexlimdva 3031 |
. . 3
|
| 45 | 33, 44 | impbid 202 |
. 2
|
| 46 | 4, 45 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-riotaBAD 34239 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-undef 7399 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-psubsp 34789 df-pmap 34790 df-polarityN 35189 df-psubclN 35221 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |