Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispsubcl2N Structured version   Visualization version   Unicode version

Theorem ispsubcl2N 35233
Description: Alternate predicate for "is a closed projective subspace". Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapsubcl.b  |-  B  =  ( Base `  K
)
pmapsubcl.m  |-  M  =  ( pmap `  K
)
pmapsubcl.c  |-  C  =  ( PSubCl `  K )
Assertion
Ref Expression
ispsubcl2N  |-  ( K  e.  HL  ->  ( X  e.  C  <->  E. y  e.  B  X  =  ( M `  y ) ) )
Distinct variable groups:    y, B    y, K    y, M    y, X
Allowed substitution hint:    C( y)

Proof of Theorem ispsubcl2N
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( Atoms `  K )  =  (
Atoms `  K )
2 eqid 2622 . . 3  |-  ( _|_P `  K )  =  ( _|_P `  K )
3 pmapsubcl.c . . 3  |-  C  =  ( PSubCl `  K )
41, 2, 3ispsubclN 35223 . 2  |-  ( K  e.  HL  ->  ( X  e.  C  <->  ( X  C_  ( Atoms `  K )  /\  ( ( _|_P `  K ) `  (
( _|_P `  K ) `  X
) )  =  X ) ) )
5 hlop 34649 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  OP )
65adantr 481 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  C_  ( Atoms `  K
) )  ->  K  e.  OP )
7 hlclat 34645 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  CLat )
87adantr 481 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  X  C_  ( Atoms `  K
) )  ->  K  e.  CLat )
91, 2polssatN 35194 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  X  C_  ( Atoms `  K
) )  ->  (
( _|_P `  K ) `  X
)  C_  ( Atoms `  K ) )
10 pmapsubcl.b . . . . . . . . . . 11  |-  B  =  ( Base `  K
)
1110, 1atssbase 34577 . . . . . . . . . 10  |-  ( Atoms `  K )  C_  B
129, 11syl6ss 3615 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  X  C_  ( Atoms `  K
) )  ->  (
( _|_P `  K ) `  X
)  C_  B )
13 eqid 2622 . . . . . . . . . 10  |-  ( lub `  K )  =  ( lub `  K )
1410, 13clatlubcl 17112 . . . . . . . . 9  |-  ( ( K  e.  CLat  /\  (
( _|_P `  K ) `  X
)  C_  B )  ->  ( ( lub `  K
) `  ( ( _|_P `  K ) `
 X ) )  e.  B )
158, 12, 14syl2anc 693 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  C_  ( Atoms `  K
) )  ->  (
( lub `  K
) `  ( ( _|_P `  K ) `
 X ) )  e.  B )
16 eqid 2622 . . . . . . . . 9  |-  ( oc
`  K )  =  ( oc `  K
)
1710, 16opoccl 34481 . . . . . . . 8  |-  ( ( K  e.  OP  /\  ( ( lub `  K
) `  ( ( _|_P `  K ) `
 X ) )  e.  B )  -> 
( ( oc `  K ) `  (
( lub `  K
) `  ( ( _|_P `  K ) `
 X ) ) )  e.  B )
186, 15, 17syl2anc 693 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  C_  ( Atoms `  K
) )  ->  (
( oc `  K
) `  ( ( lub `  K ) `  ( ( _|_P `  K ) `  X
) ) )  e.  B )
1918ex 450 . . . . . 6  |-  ( K  e.  HL  ->  ( X  C_  ( Atoms `  K
)  ->  ( ( oc `  K ) `  ( ( lub `  K
) `  ( ( _|_P `  K ) `
 X ) ) )  e.  B ) )
2019adantrd 484 . . . . 5  |-  ( K  e.  HL  ->  (
( X  C_  ( Atoms `  K )  /\  ( ( _|_P `  K ) `  (
( _|_P `  K ) `  X
) )  =  X )  ->  ( ( oc `  K ) `  ( ( lub `  K
) `  ( ( _|_P `  K ) `
 X ) ) )  e.  B ) )
21 pmapsubcl.m . . . . . . . . . 10  |-  M  =  ( pmap `  K
)
2213, 16, 1, 21, 2polval2N 35192 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( ( _|_P `  K ) `  X
)  C_  ( Atoms `  K ) )  -> 
( ( _|_P `  K ) `  (
( _|_P `  K ) `  X
) )  =  ( M `  ( ( oc `  K ) `
 ( ( lub `  K ) `  (
( _|_P `  K ) `  X
) ) ) ) )
239, 22syldan 487 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  C_  ( Atoms `  K
) )  ->  (
( _|_P `  K ) `  (
( _|_P `  K ) `  X
) )  =  ( M `  ( ( oc `  K ) `
 ( ( lub `  K ) `  (
( _|_P `  K ) `  X
) ) ) ) )
2423ex 450 . . . . . . 7  |-  ( K  e.  HL  ->  ( X  C_  ( Atoms `  K
)  ->  ( ( _|_P `  K ) `
 ( ( _|_P `  K ) `
 X ) )  =  ( M `  ( ( oc `  K ) `  (
( lub `  K
) `  ( ( _|_P `  K ) `
 X ) ) ) ) ) )
25 eqeq1 2626 . . . . . . . 8  |-  ( ( ( _|_P `  K ) `  (
( _|_P `  K ) `  X
) )  =  X  ->  ( ( ( _|_P `  K
) `  ( ( _|_P `  K ) `
 X ) )  =  ( M `  ( ( oc `  K ) `  (
( lub `  K
) `  ( ( _|_P `  K ) `
 X ) ) ) )  <->  X  =  ( M `  ( ( oc `  K ) `
 ( ( lub `  K ) `  (
( _|_P `  K ) `  X
) ) ) ) ) )
2625biimpcd 239 . . . . . . 7  |-  ( ( ( _|_P `  K ) `  (
( _|_P `  K ) `  X
) )  =  ( M `  ( ( oc `  K ) `
 ( ( lub `  K ) `  (
( _|_P `  K ) `  X
) ) ) )  ->  ( ( ( _|_P `  K
) `  ( ( _|_P `  K ) `
 X ) )  =  X  ->  X  =  ( M `  ( ( oc `  K ) `  (
( lub `  K
) `  ( ( _|_P `  K ) `
 X ) ) ) ) ) )
2724, 26syl6 35 . . . . . 6  |-  ( K  e.  HL  ->  ( X  C_  ( Atoms `  K
)  ->  ( (
( _|_P `  K ) `  (
( _|_P `  K ) `  X
) )  =  X  ->  X  =  ( M `  ( ( oc `  K ) `
 ( ( lub `  K ) `  (
( _|_P `  K ) `  X
) ) ) ) ) ) )
2827impd 447 . . . . 5  |-  ( K  e.  HL  ->  (
( X  C_  ( Atoms `  K )  /\  ( ( _|_P `  K ) `  (
( _|_P `  K ) `  X
) )  =  X )  ->  X  =  ( M `  ( ( oc `  K ) `
 ( ( lub `  K ) `  (
( _|_P `  K ) `  X
) ) ) ) ) )
2920, 28jcad 555 . . . 4  |-  ( K  e.  HL  ->  (
( X  C_  ( Atoms `  K )  /\  ( ( _|_P `  K ) `  (
( _|_P `  K ) `  X
) )  =  X )  ->  ( (
( oc `  K
) `  ( ( lub `  K ) `  ( ( _|_P `  K ) `  X
) ) )  e.  B  /\  X  =  ( M `  (
( oc `  K
) `  ( ( lub `  K ) `  ( ( _|_P `  K ) `  X
) ) ) ) ) ) )
30 fveq2 6191 . . . . . 6  |-  ( y  =  ( ( oc
`  K ) `  ( ( lub `  K
) `  ( ( _|_P `  K ) `
 X ) ) )  ->  ( M `  y )  =  ( M `  ( ( oc `  K ) `
 ( ( lub `  K ) `  (
( _|_P `  K ) `  X
) ) ) ) )
3130eqeq2d 2632 . . . . 5  |-  ( y  =  ( ( oc
`  K ) `  ( ( lub `  K
) `  ( ( _|_P `  K ) `
 X ) ) )  ->  ( X  =  ( M `  y )  <->  X  =  ( M `  ( ( oc `  K ) `
 ( ( lub `  K ) `  (
( _|_P `  K ) `  X
) ) ) ) ) )
3231rspcev 3309 . . . 4  |-  ( ( ( ( oc `  K ) `  (
( lub `  K
) `  ( ( _|_P `  K ) `
 X ) ) )  e.  B  /\  X  =  ( M `  ( ( oc `  K ) `  (
( lub `  K
) `  ( ( _|_P `  K ) `
 X ) ) ) ) )  ->  E. y  e.  B  X  =  ( M `  y ) )
3329, 32syl6 35 . . 3  |-  ( K  e.  HL  ->  (
( X  C_  ( Atoms `  K )  /\  ( ( _|_P `  K ) `  (
( _|_P `  K ) `  X
) )  =  X )  ->  E. y  e.  B  X  =  ( M `  y ) ) )
3410, 1, 21pmapssat 35045 . . . . 5  |-  ( ( K  e.  HL  /\  y  e.  B )  ->  ( M `  y
)  C_  ( Atoms `  K ) )
3510, 21, 22polpmapN 35199 . . . . 5  |-  ( ( K  e.  HL  /\  y  e.  B )  ->  ( ( _|_P `  K ) `  (
( _|_P `  K ) `  ( M `  y )
) )  =  ( M `  y ) )
36 sseq1 3626 . . . . . . 7  |-  ( X  =  ( M `  y )  ->  ( X  C_  ( Atoms `  K
)  <->  ( M `  y )  C_  ( Atoms `  K ) ) )
37 fveq2 6191 . . . . . . . . 9  |-  ( X  =  ( M `  y )  ->  (
( _|_P `  K ) `  X
)  =  ( ( _|_P `  K
) `  ( M `  y ) ) )
3837fveq2d 6195 . . . . . . . 8  |-  ( X  =  ( M `  y )  ->  (
( _|_P `  K ) `  (
( _|_P `  K ) `  X
) )  =  ( ( _|_P `  K ) `  (
( _|_P `  K ) `  ( M `  y )
) ) )
39 id 22 . . . . . . . 8  |-  ( X  =  ( M `  y )  ->  X  =  ( M `  y ) )
4038, 39eqeq12d 2637 . . . . . . 7  |-  ( X  =  ( M `  y )  ->  (
( ( _|_P `  K ) `  (
( _|_P `  K ) `  X
) )  =  X  <-> 
( ( _|_P `  K ) `  (
( _|_P `  K ) `  ( M `  y )
) )  =  ( M `  y ) ) )
4136, 40anbi12d 747 . . . . . 6  |-  ( X  =  ( M `  y )  ->  (
( X  C_  ( Atoms `  K )  /\  ( ( _|_P `  K ) `  (
( _|_P `  K ) `  X
) )  =  X )  <->  ( ( M `
 y )  C_  ( Atoms `  K )  /\  ( ( _|_P `  K ) `  (
( _|_P `  K ) `  ( M `  y )
) )  =  ( M `  y ) ) ) )
4241biimprcd 240 . . . . 5  |-  ( ( ( M `  y
)  C_  ( Atoms `  K )  /\  (
( _|_P `  K ) `  (
( _|_P `  K ) `  ( M `  y )
) )  =  ( M `  y ) )  ->  ( X  =  ( M `  y )  ->  ( X  C_  ( Atoms `  K
)  /\  ( ( _|_P `  K ) `
 ( ( _|_P `  K ) `
 X ) )  =  X ) ) )
4334, 35, 42syl2anc 693 . . . 4  |-  ( ( K  e.  HL  /\  y  e.  B )  ->  ( X  =  ( M `  y )  ->  ( X  C_  ( Atoms `  K )  /\  ( ( _|_P `  K ) `  (
( _|_P `  K ) `  X
) )  =  X ) ) )
4443rexlimdva 3031 . . 3  |-  ( K  e.  HL  ->  ( E. y  e.  B  X  =  ( M `  y )  ->  ( X  C_  ( Atoms `  K
)  /\  ( ( _|_P `  K ) `
 ( ( _|_P `  K ) `
 X ) )  =  X ) ) )
4533, 44impbid 202 . 2  |-  ( K  e.  HL  ->  (
( X  C_  ( Atoms `  K )  /\  ( ( _|_P `  K ) `  (
( _|_P `  K ) `  X
) )  =  X )  <->  E. y  e.  B  X  =  ( M `  y ) ) )
464, 45bitrd 268 1  |-  ( K  e.  HL  ->  ( X  e.  C  <->  E. y  e.  B  X  =  ( M `  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913    C_ wss 3574   ` cfv 5888   Basecbs 15857   occoc 15949   lubclub 16942   CLatccla 17107   OPcops 34459   Atomscatm 34550   HLchlt 34637   pmapcpmap 34783   _|_PcpolN 35188   PSubClcpscN 35220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-undef 7399  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-psubsp 34789  df-pmap 34790  df-polarityN 35189  df-psubclN 35221
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator