| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > regr1lem | Structured version Visualization version Unicode version | ||
| Description: Lemma for regr1 21553. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| kqval.2 |
|
| regr1lem.2 |
|
| regr1lem.3 |
|
| regr1lem.4 |
|
| regr1lem.5 |
|
| regr1lem.6 |
|
| regr1lem.7 |
|
| Ref | Expression |
|---|---|
| regr1lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | regr1lem.3 |
. . . . 5
| |
| 2 | 1 | adantr 481 |
. . . 4
|
| 3 | regr1lem.6 |
. . . . 5
| |
| 4 | 3 | adantr 481 |
. . . 4
|
| 5 | simpr 477 |
. . . 4
| |
| 6 | regsep 21138 |
. . . 4
| |
| 7 | 2, 4, 5, 6 | syl3anc 1326 |
. . 3
|
| 8 | regr1lem.7 |
. . . . 5
| |
| 9 | 8 | ad2antrr 762 |
. . . 4
|
| 10 | regr1lem.2 |
. . . . . . . 8
| |
| 11 | 10 | ad3antrrr 766 |
. . . . . . 7
|
| 12 | simplrl 800 |
. . . . . . 7
| |
| 13 | kqval.2 |
. . . . . . . 8
| |
| 14 | 13 | kqopn 21537 |
. . . . . . 7
|
| 15 | 11, 12, 14 | syl2anc 693 |
. . . . . 6
|
| 16 | toponuni 20719 |
. . . . . . . . . 10
| |
| 17 | 11, 16 | syl 17 |
. . . . . . . . 9
|
| 18 | 17 | difeq1d 3727 |
. . . . . . . 8
|
| 19 | topontop 20718 |
. . . . . . . . . . 11
| |
| 20 | 11, 19 | syl 17 |
. . . . . . . . . 10
|
| 21 | elssuni 4467 |
. . . . . . . . . . 11
| |
| 22 | 12, 21 | syl 17 |
. . . . . . . . . 10
|
| 23 | eqid 2622 |
. . . . . . . . . . 11
| |
| 24 | 23 | clscld 20851 |
. . . . . . . . . 10
|
| 25 | 20, 22, 24 | syl2anc 693 |
. . . . . . . . 9
|
| 26 | 23 | cldopn 20835 |
. . . . . . . . 9
|
| 27 | 25, 26 | syl 17 |
. . . . . . . 8
|
| 28 | 18, 27 | eqeltrd 2701 |
. . . . . . 7
|
| 29 | 13 | kqopn 21537 |
. . . . . . 7
|
| 30 | 11, 28, 29 | syl2anc 693 |
. . . . . 6
|
| 31 | simprrl 804 |
. . . . . . . 8
| |
| 32 | 31 | adantr 481 |
. . . . . . 7
|
| 33 | regr1lem.4 |
. . . . . . . . 9
| |
| 34 | 33 | ad3antrrr 766 |
. . . . . . . 8
|
| 35 | 13 | kqfvima 21533 |
. . . . . . . 8
|
| 36 | 11, 12, 34, 35 | syl3anc 1326 |
. . . . . . 7
|
| 37 | 32, 36 | mpbid 222 |
. . . . . 6
|
| 38 | regr1lem.5 |
. . . . . . . . 9
| |
| 39 | 38 | ad3antrrr 766 |
. . . . . . . 8
|
| 40 | simprrr 805 |
. . . . . . . . . 10
| |
| 41 | 40 | sseld 3602 |
. . . . . . . . 9
|
| 42 | 41 | con3dimp 457 |
. . . . . . . 8
|
| 43 | 39, 42 | eldifd 3585 |
. . . . . . 7
|
| 44 | 13 | kqfvima 21533 |
. . . . . . . 8
|
| 45 | 11, 28, 39, 44 | syl3anc 1326 |
. . . . . . 7
|
| 46 | 43, 45 | mpbid 222 |
. . . . . 6
|
| 47 | 23 | sscls 20860 |
. . . . . . . . . 10
|
| 48 | 20, 22, 47 | syl2anc 693 |
. . . . . . . . 9
|
| 49 | 48 | sscond 3747 |
. . . . . . . 8
|
| 50 | imass2 5501 |
. . . . . . . 8
| |
| 51 | sslin 3839 |
. . . . . . . 8
| |
| 52 | 49, 50, 51 | 3syl 18 |
. . . . . . 7
|
| 53 | 13 | kqdisj 21535 |
. . . . . . . 8
|
| 54 | 11, 12, 53 | syl2anc 693 |
. . . . . . 7
|
| 55 | sseq0 3975 |
. . . . . . 7
| |
| 56 | 52, 54, 55 | syl2anc 693 |
. . . . . 6
|
| 57 | eleq2 2690 |
. . . . . . . 8
| |
| 58 | ineq1 3807 |
. . . . . . . . 9
| |
| 59 | 58 | eqeq1d 2624 |
. . . . . . . 8
|
| 60 | 57, 59 | 3anbi13d 1401 |
. . . . . . 7
|
| 61 | eleq2 2690 |
. . . . . . . 8
| |
| 62 | ineq2 3808 |
. . . . . . . . 9
| |
| 63 | 62 | eqeq1d 2624 |
. . . . . . . 8
|
| 64 | 61, 63 | 3anbi23d 1402 |
. . . . . . 7
|
| 65 | 60, 64 | rspc2ev 3324 |
. . . . . 6
|
| 66 | 15, 30, 37, 46, 56, 65 | syl113anc 1338 |
. . . . 5
|
| 67 | 66 | ex 450 |
. . . 4
|
| 68 | 9, 67 | mt3d 140 |
. . 3
|
| 69 | 7, 68 | rexlimddv 3035 |
. 2
|
| 70 | 69 | ex 450 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-qtop 16167 df-top 20699 df-topon 20716 df-cld 20823 df-cls 20825 df-reg 21120 df-kq 21497 |
| This theorem is referenced by: regr1lem2 21543 |
| Copyright terms: Public domain | W3C validator |