MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdglim2 Structured version   Visualization version   Unicode version

Theorem rdglim2 7528
Description: The value of the recursive definition generator at a limit ordinal, in terms of the union of all smaller values. (Contributed by NM, 23-Apr-1995.)
Assertion
Ref Expression
rdglim2  |-  ( ( B  e.  C  /\  Lim  B )  ->  ( rec ( F ,  A
) `  B )  =  U. { y  |  E. x  e.  B  y  =  ( rec ( F ,  A ) `
 x ) } )
Distinct variable groups:    x, y, A    x, B, y    x, F, y
Allowed substitution hints:    C( x, y)

Proof of Theorem rdglim2
StepHypRef Expression
1 rdglim 7522 . 2  |-  ( ( B  e.  C  /\  Lim  B )  ->  ( rec ( F ,  A
) `  B )  =  U. ( rec ( F ,  A ) " B ) )
2 dfima3 5469 . . . . 5  |-  ( rec ( F ,  A
) " B )  =  { y  |  E. x ( x  e.  B  /\  <. x ,  y >.  e.  rec ( F ,  A ) ) }
3 df-rex 2918 . . . . . . 7  |-  ( E. x  e.  B  y  =  ( rec ( F ,  A ) `  x )  <->  E. x
( x  e.  B  /\  y  =  ( rec ( F ,  A
) `  x )
) )
4 limord 5784 . . . . . . . . . . 11  |-  ( Lim 
B  ->  Ord  B )
5 ordelord 5745 . . . . . . . . . . . . 13  |-  ( ( Ord  B  /\  x  e.  B )  ->  Ord  x )
65ex 450 . . . . . . . . . . . 12  |-  ( Ord 
B  ->  ( x  e.  B  ->  Ord  x
) )
7 vex 3203 . . . . . . . . . . . . 13  |-  x  e. 
_V
87elon 5732 . . . . . . . . . . . 12  |-  ( x  e.  On  <->  Ord  x )
96, 8syl6ibr 242 . . . . . . . . . . 11  |-  ( Ord 
B  ->  ( x  e.  B  ->  x  e.  On ) )
104, 9syl 17 . . . . . . . . . 10  |-  ( Lim 
B  ->  ( x  e.  B  ->  x  e.  On ) )
11 eqcom 2629 . . . . . . . . . . 11  |-  ( y  =  ( rec ( F ,  A ) `  x )  <->  ( rec ( F ,  A ) `
 x )  =  y )
12 rdgfnon 7514 . . . . . . . . . . . 12  |-  rec ( F ,  A )  Fn  On
13 fnopfvb 6237 . . . . . . . . . . . 12  |-  ( ( rec ( F ,  A )  Fn  On  /\  x  e.  On )  ->  ( ( rec ( F ,  A
) `  x )  =  y  <->  <. x ,  y
>.  e.  rec ( F ,  A ) ) )
1412, 13mpan 706 . . . . . . . . . . 11  |-  ( x  e.  On  ->  (
( rec ( F ,  A ) `  x )  =  y  <->  <. x ,  y >.  e.  rec ( F ,  A ) ) )
1511, 14syl5bb 272 . . . . . . . . . 10  |-  ( x  e.  On  ->  (
y  =  ( rec ( F ,  A
) `  x )  <->  <.
x ,  y >.  e.  rec ( F ,  A ) ) )
1610, 15syl6 35 . . . . . . . . 9  |-  ( Lim 
B  ->  ( x  e.  B  ->  ( y  =  ( rec ( F ,  A ) `  x )  <->  <. x ,  y >.  e.  rec ( F ,  A ) ) ) )
1716pm5.32d 671 . . . . . . . 8  |-  ( Lim 
B  ->  ( (
x  e.  B  /\  y  =  ( rec ( F ,  A ) `
 x ) )  <-> 
( x  e.  B  /\  <. x ,  y
>.  e.  rec ( F ,  A ) ) ) )
1817exbidv 1850 . . . . . . 7  |-  ( Lim 
B  ->  ( E. x ( x  e.  B  /\  y  =  ( rec ( F ,  A ) `  x ) )  <->  E. x
( x  e.  B  /\  <. x ,  y
>.  e.  rec ( F ,  A ) ) ) )
193, 18syl5rbb 273 . . . . . 6  |-  ( Lim 
B  ->  ( E. x ( x  e.  B  /\  <. x ,  y >.  e.  rec ( F ,  A ) )  <->  E. x  e.  B  y  =  ( rec ( F ,  A ) `
 x ) ) )
2019abbidv 2741 . . . . 5  |-  ( Lim 
B  ->  { y  |  E. x ( x  e.  B  /\  <. x ,  y >.  e.  rec ( F ,  A ) ) }  =  {
y  |  E. x  e.  B  y  =  ( rec ( F ,  A ) `  x
) } )
212, 20syl5eq 2668 . . . 4  |-  ( Lim 
B  ->  ( rec ( F ,  A )
" B )  =  { y  |  E. x  e.  B  y  =  ( rec ( F ,  A ) `  x ) } )
2221unieqd 4446 . . 3  |-  ( Lim 
B  ->  U. ( rec ( F ,  A
) " B )  =  U. { y  |  E. x  e.  B  y  =  ( rec ( F ,  A ) `  x
) } )
2322adantl 482 . 2  |-  ( ( B  e.  C  /\  Lim  B )  ->  U. ( rec ( F ,  A
) " B )  =  U. { y  |  E. x  e.  B  y  =  ( rec ( F ,  A ) `  x
) } )
241, 23eqtrd 2656 1  |-  ( ( B  e.  C  /\  Lim  B )  ->  ( rec ( F ,  A
) `  B )  =  U. { y  |  E. x  e.  B  y  =  ( rec ( F ,  A ) `
 x ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   E.wrex 2913   <.cop 4183   U.cuni 4436   "cima 5117   Ord word 5722   Oncon0 5723   Lim wlim 5724    Fn wfn 5883   ` cfv 5888   reccrdg 7505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-wrecs 7407  df-recs 7468  df-rdg 7506
This theorem is referenced by:  rdglim2a  7529
  Copyright terms: Public domain W3C validator