MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regr1lem2 Structured version   Visualization version   Unicode version

Theorem regr1lem2 21543
Description: A Kolmogorov quotient of a regular space is Hausdorff. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
Assertion
Ref Expression
regr1lem2  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  (KQ `  J )  e.  Haus )
Distinct variable groups:    x, y, J    x, X, y
Allowed substitution hints:    F( x, y)

Proof of Theorem regr1lem2
Dummy variables  m  n  w  z  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . . . . 10  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
2 simplll 798 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  ( z  e.  X  /\  w  e.  X ) )  /\  ( a  e.  J  /\  -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  J  e.  (TopOn `  X ) )
3 simpllr 799 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  ( z  e.  X  /\  w  e.  X ) )  /\  ( a  e.  J  /\  -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  J  e.  Reg )
4 simplrl 800 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  ( z  e.  X  /\  w  e.  X ) )  /\  ( a  e.  J  /\  -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  z  e.  X
)
5 simplrr 801 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  ( z  e.  X  /\  w  e.  X ) )  /\  ( a  e.  J  /\  -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  w  e.  X
)
6 simprl 794 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  ( z  e.  X  /\  w  e.  X ) )  /\  ( a  e.  J  /\  -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  a  e.  J
)
7 simprr 796 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  ( z  e.  X  /\  w  e.  X ) )  /\  ( a  e.  J  /\  -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) )
81, 2, 3, 4, 5, 6, 7regr1lem 21542 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  ( z  e.  X  /\  w  e.  X ) )  /\  ( a  e.  J  /\  -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  ( z  e.  a  ->  w  e.  a ) )
9 3ancoma 1045 . . . . . . . . . . . . . 14  |-  ( ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) )  <->  ( ( F `  w )  e.  n  /\  ( F `  z )  e.  m  /\  (
m  i^i  n )  =  (/) ) )
10 incom 3805 . . . . . . . . . . . . . . . 16  |-  ( m  i^i  n )  =  ( n  i^i  m
)
1110eqeq1i 2627 . . . . . . . . . . . . . . 15  |-  ( ( m  i^i  n )  =  (/)  <->  ( n  i^i  m )  =  (/) )
12113anbi3i 1255 . . . . . . . . . . . . . 14  |-  ( ( ( F `  w
)  e.  n  /\  ( F `  z )  e.  m  /\  (
m  i^i  n )  =  (/) )  <->  ( ( F `  w )  e.  n  /\  ( F `  z )  e.  m  /\  (
n  i^i  m )  =  (/) ) )
139, 12bitri 264 . . . . . . . . . . . . 13  |-  ( ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) )  <->  ( ( F `  w )  e.  n  /\  ( F `  z )  e.  m  /\  (
n  i^i  m )  =  (/) ) )
14132rexbii 3042 . . . . . . . . . . . 12  |-  ( E. m  e.  (KQ `  J ) E. n  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  ( F `  w
)  e.  n  /\  ( m  i^i  n
)  =  (/) )  <->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  w
)  e.  n  /\  ( F `  z )  e.  m  /\  (
n  i^i  m )  =  (/) ) )
15 rexcom 3099 . . . . . . . . . . . 12  |-  ( E. m  e.  (KQ `  J ) E. n  e.  (KQ `  J ) ( ( F `  w )  e.  n  /\  ( F `  z
)  e.  m  /\  ( n  i^i  m
)  =  (/) )  <->  E. n  e.  (KQ `  J ) E. m  e.  (KQ
`  J ) ( ( F `  w
)  e.  n  /\  ( F `  z )  e.  m  /\  (
n  i^i  m )  =  (/) ) )
1614, 15bitri 264 . . . . . . . . . . 11  |-  ( E. m  e.  (KQ `  J ) E. n  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  ( F `  w
)  e.  n  /\  ( m  i^i  n
)  =  (/) )  <->  E. n  e.  (KQ `  J ) E. m  e.  (KQ
`  J ) ( ( F `  w
)  e.  n  /\  ( F `  z )  e.  m  /\  (
n  i^i  m )  =  (/) ) )
177, 16sylnib 318 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  ( z  e.  X  /\  w  e.  X ) )  /\  ( a  e.  J  /\  -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  -.  E. n  e.  (KQ `  J ) E. m  e.  (KQ
`  J ) ( ( F `  w
)  e.  n  /\  ( F `  z )  e.  m  /\  (
n  i^i  m )  =  (/) ) )
181, 2, 3, 5, 4, 6, 17regr1lem 21542 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  ( z  e.  X  /\  w  e.  X ) )  /\  ( a  e.  J  /\  -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  ( w  e.  a  ->  z  e.  a ) )
198, 18impbid 202 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  ( z  e.  X  /\  w  e.  X ) )  /\  ( a  e.  J  /\  -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  ( z  e.  a  <->  w  e.  a
) )
2019expr 643 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  ( z  e.  X  /\  w  e.  X ) )  /\  a  e.  J )  ->  ( -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) )  ->  (
z  e.  a  <->  w  e.  a ) ) )
2120ralrimdva 2969 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  ( F `  w
)  e.  n  /\  ( m  i^i  n
)  =  (/) )  ->  A. a  e.  J  ( z  e.  a  <-> 
w  e.  a ) ) )
221kqfeq 21527 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  z  e.  X  /\  w  e.  X )  ->  (
( F `  z
)  =  ( F `
 w )  <->  A. y  e.  J  ( z  e.  y  <->  w  e.  y
) ) )
23 elequ2 2004 . . . . . . . . . . 11  |-  ( y  =  a  ->  (
z  e.  y  <->  z  e.  a ) )
24 elequ2 2004 . . . . . . . . . . 11  |-  ( y  =  a  ->  (
w  e.  y  <->  w  e.  a ) )
2523, 24bibi12d 335 . . . . . . . . . 10  |-  ( y  =  a  ->  (
( z  e.  y  <-> 
w  e.  y )  <-> 
( z  e.  a  <-> 
w  e.  a ) ) )
2625cbvralv 3171 . . . . . . . . 9  |-  ( A. y  e.  J  (
z  e.  y  <->  w  e.  y )  <->  A. a  e.  J  ( z  e.  a  <->  w  e.  a
) )
2722, 26syl6bb 276 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  z  e.  X  /\  w  e.  X )  ->  (
( F `  z
)  =  ( F `
 w )  <->  A. a  e.  J  ( z  e.  a  <->  w  e.  a
) ) )
28273expb 1266 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( ( F `  z )  =  ( F `  w )  <->  A. a  e.  J  ( z  e.  a  <->  w  e.  a
) ) )
2928adantlr 751 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( ( F `  z )  =  ( F `  w )  <->  A. a  e.  J  ( z  e.  a  <->  w  e.  a
) ) )
3021, 29sylibrd 249 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  ( F `  w
)  e.  n  /\  ( m  i^i  n
)  =  (/) )  -> 
( F `  z
)  =  ( F `
 w ) ) )
3130necon1ad 2811 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( ( F `  z )  =/=  ( F `  w
)  ->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )
3231ralrimivva 2971 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  A. z  e.  X  A. w  e.  X  ( ( F `  z )  =/=  ( F `  w
)  ->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )
331kqffn 21528 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  F  Fn  X )
3433adantr 481 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  F  Fn  X )
35 neeq1 2856 . . . . . . . 8  |-  ( a  =  ( F `  z )  ->  (
a  =/=  b  <->  ( F `  z )  =/=  b
) )
36 eleq1 2689 . . . . . . . . . 10  |-  ( a  =  ( F `  z )  ->  (
a  e.  m  <->  ( F `  z )  e.  m
) )
37363anbi1d 1403 . . . . . . . . 9  |-  ( a  =  ( F `  z )  ->  (
( a  e.  m  /\  b  e.  n  /\  ( m  i^i  n
)  =  (/) )  <->  ( ( F `  z )  e.  m  /\  b  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )
38372rexbidv 3057 . . . . . . . 8  |-  ( a  =  ( F `  z )  ->  ( E. m  e.  (KQ `  J ) E. n  e.  (KQ `  J ) ( a  e.  m  /\  b  e.  n  /\  ( m  i^i  n
)  =  (/) )  <->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  b  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) )
3935, 38imbi12d 334 . . . . . . 7  |-  ( a  =  ( F `  z )  ->  (
( a  =/=  b  ->  E. m  e.  (KQ
`  J ) E. n  e.  (KQ `  J ) ( a  e.  m  /\  b  e.  n  /\  (
m  i^i  n )  =  (/) ) )  <->  ( ( F `  z )  =/=  b  ->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  b  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) ) )
4039ralbidv 2986 . . . . . 6  |-  ( a  =  ( F `  z )  ->  ( A. b  e.  ran  F ( a  =/=  b  ->  E. m  e.  (KQ
`  J ) E. n  e.  (KQ `  J ) ( a  e.  m  /\  b  e.  n  /\  (
m  i^i  n )  =  (/) ) )  <->  A. b  e.  ran  F ( ( F `  z )  =/=  b  ->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  b  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) ) )
4140ralrn 6362 . . . . 5  |-  ( F  Fn  X  ->  ( A. a  e.  ran  F A. b  e.  ran  F ( a  =/=  b  ->  E. m  e.  (KQ
`  J ) E. n  e.  (KQ `  J ) ( a  e.  m  /\  b  e.  n  /\  (
m  i^i  n )  =  (/) ) )  <->  A. z  e.  X  A. b  e.  ran  F ( ( F `  z )  =/=  b  ->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  b  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) ) )
42 neeq2 2857 . . . . . . . 8  |-  ( b  =  ( F `  w )  ->  (
( F `  z
)  =/=  b  <->  ( F `  z )  =/=  ( F `  w )
) )
43 eleq1 2689 . . . . . . . . . 10  |-  ( b  =  ( F `  w )  ->  (
b  e.  n  <->  ( F `  w )  e.  n
) )
44433anbi2d 1404 . . . . . . . . 9  |-  ( b  =  ( F `  w )  ->  (
( ( F `  z )  e.  m  /\  b  e.  n  /\  ( m  i^i  n
)  =  (/) )  <->  ( ( F `  z )  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )
45442rexbidv 3057 . . . . . . . 8  |-  ( b  =  ( F `  w )  ->  ( E. m  e.  (KQ `  J ) E. n  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  b  e.  n  /\  ( m  i^i  n
)  =  (/) )  <->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )
4642, 45imbi12d 334 . . . . . . 7  |-  ( b  =  ( F `  w )  ->  (
( ( F `  z )  =/=  b  ->  E. m  e.  (KQ
`  J ) E. n  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  b  e.  n  /\  (
m  i^i  n )  =  (/) ) )  <->  ( ( F `  z )  =/=  ( F `  w
)  ->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) ) )
4746ralrn 6362 . . . . . 6  |-  ( F  Fn  X  ->  ( A. b  e.  ran  F ( ( F `  z )  =/=  b  ->  E. m  e.  (KQ
`  J ) E. n  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  b  e.  n  /\  (
m  i^i  n )  =  (/) ) )  <->  A. w  e.  X  ( ( F `  z )  =/=  ( F `  w
)  ->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) ) )
4847ralbidv 2986 . . . . 5  |-  ( F  Fn  X  ->  ( A. z  e.  X  A. b  e.  ran  F ( ( F `  z )  =/=  b  ->  E. m  e.  (KQ
`  J ) E. n  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  b  e.  n  /\  (
m  i^i  n )  =  (/) ) )  <->  A. z  e.  X  A. w  e.  X  ( ( F `  z )  =/=  ( F `  w
)  ->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) ) )
4941, 48bitrd 268 . . . 4  |-  ( F  Fn  X  ->  ( A. a  e.  ran  F A. b  e.  ran  F ( a  =/=  b  ->  E. m  e.  (KQ
`  J ) E. n  e.  (KQ `  J ) ( a  e.  m  /\  b  e.  n  /\  (
m  i^i  n )  =  (/) ) )  <->  A. z  e.  X  A. w  e.  X  ( ( F `  z )  =/=  ( F `  w
)  ->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) ) )
5034, 49syl 17 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  ( A. a  e.  ran  F A. b  e.  ran  F ( a  =/=  b  ->  E. m  e.  (KQ
`  J ) E. n  e.  (KQ `  J ) ( a  e.  m  /\  b  e.  n  /\  (
m  i^i  n )  =  (/) ) )  <->  A. z  e.  X  A. w  e.  X  ( ( F `  z )  =/=  ( F `  w
)  ->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) ) )
5132, 50mpbird 247 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  A. a  e.  ran  F A. b  e.  ran  F ( a  =/=  b  ->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( a  e.  m  /\  b  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) )
521kqtopon 21530 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  (KQ `  J
)  e.  (TopOn `  ran  F ) )
5352adantr 481 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  (KQ `  J )  e.  (TopOn `  ran  F ) )
54 ishaus2 21155 . . 3  |-  ( (KQ
`  J )  e.  (TopOn `  ran  F )  ->  ( (KQ `  J )  e.  Haus  <->  A. a  e.  ran  F A. b  e.  ran  F ( a  =/=  b  ->  E. m  e.  (KQ `  J ) E. n  e.  (KQ `  J ) ( a  e.  m  /\  b  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) ) )
5553, 54syl 17 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  (
(KQ `  J )  e.  Haus  <->  A. a  e.  ran  F A. b  e.  ran  F ( a  =/=  b  ->  E. m  e.  (KQ
`  J ) E. n  e.  (KQ `  J ) ( a  e.  m  /\  b  e.  n  /\  (
m  i^i  n )  =  (/) ) ) ) )
5651, 55mpbird 247 1  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  (KQ `  J )  e.  Haus )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    i^i cin 3573   (/)c0 3915    |-> cmpt 4729   ran crn 5115    Fn wfn 5883   ` cfv 5888  TopOnctopon 20715   Hauscha 21112   Regcreg 21113  KQckq 21496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-qtop 16167  df-top 20699  df-topon 20716  df-cld 20823  df-cls 20825  df-haus 21119  df-reg 21120  df-kq 21497
This theorem is referenced by:  regr1  21553
  Copyright terms: Public domain W3C validator