MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  residfi Structured version   Visualization version   Unicode version

Theorem residfi 8247
Description: A restricted identity function is finite iff the restricting class is finite. (Contributed by AV, 10-Jan-2020.)
Assertion
Ref Expression
residfi  |-  ( (  _I  |`  A )  e.  Fin  <->  A  e.  Fin )

Proof of Theorem residfi
StepHypRef Expression
1 dmresi 5457 . . 3  |-  dom  (  _I  |`  A )  =  A
2 dmfi 8244 . . 3  |-  ( (  _I  |`  A )  e.  Fin  ->  dom  (  _I  |`  A )  e.  Fin )
31, 2syl5eqelr 2706 . 2  |-  ( (  _I  |`  A )  e.  Fin  ->  A  e.  Fin )
4 funi 5920 . . . 4  |-  Fun  _I
5 funfn 5918 . . . 4  |-  ( Fun 
_I 
<->  _I  Fn  dom  _I  )
64, 5mpbi 220 . . 3  |-  _I  Fn  dom  _I
7 resfnfinfin 8246 . . 3  |-  ( (  _I  Fn  dom  _I  /\  A  e.  Fin )  ->  (  _I  |`  A )  e.  Fin )
86, 7mpan 706 . 2  |-  ( A  e.  Fin  ->  (  _I  |`  A )  e. 
Fin )
93, 8impbii 199 1  |-  ( (  _I  |`  A )  e.  Fin  <->  A  e.  Fin )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    e. wcel 1990    _I cid 5023   dom cdm 5114    |` cres 5116   Fun wfun 5882    Fn wfn 5883   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-fin 7959
This theorem is referenced by:  fusgrfisstep  26221
  Copyright terms: Public domain W3C validator