MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsn0non Structured version   Visualization version   Unicode version

Theorem snsn0non 5846
Description: The singleton of the singleton of the empty set is not an ordinal (nor a natural number by omsson 7069). It can be used to represent an "undefined" value for a partial operation on natural or ordinal numbers. See also onxpdisj 5847. (Contributed by NM, 21-May-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
snsn0non  |-  -.  { { (/) } }  e.  On

Proof of Theorem snsn0non
StepHypRef Expression
1 p0ex 4853 . . . . 5  |-  { (/) }  e.  _V
21snid 4208 . . . 4  |-  { (/) }  e.  { { (/) } }
32n0ii 3922 . . 3  |-  -.  { { (/) } }  =  (/)
4 0ex 4790 . . . . . . 7  |-  (/)  e.  _V
54snid 4208 . . . . . 6  |-  (/)  e.  { (/)
}
65n0ii 3922 . . . . 5  |-  -.  { (/)
}  =  (/)
7 eqcom 2629 . . . . 5  |-  ( (/)  =  { (/) }  <->  { (/) }  =  (/) )
86, 7mtbir 313 . . . 4  |-  -.  (/)  =  { (/)
}
94elsn 4192 . . . 4  |-  ( (/)  e.  { { (/) } }  <->  (/)  =  { (/) } )
108, 9mtbir 313 . . 3  |-  -.  (/)  e.  { { (/) } }
113, 10pm3.2ni 899 . 2  |-  -.  ( { { (/) } }  =  (/) 
\/  (/)  e.  { { (/)
} } )
12 on0eqel 5845 . 2  |-  ( { { (/) } }  e.  On  ->  ( { { (/)
} }  =  (/)  \/  (/)  e.  { { (/) } } ) )
1311, 12mto 188 1  |-  -.  { { (/) } }  e.  On
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    \/ wo 383    = wceq 1483    e. wcel 1990   (/)c0 3915   {csn 4177   Oncon0 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727
This theorem is referenced by:  onnev  5848  onpsstopbas  32429
  Copyright terms: Public domain W3C validator