MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subumgr Structured version   Visualization version   Unicode version

Theorem subumgr 26180
Description: A subgraph of a multigraph is a multigraph. (Contributed by AV, 26-Nov-2020.)
Assertion
Ref Expression
subumgr  |-  ( ( G  e. UMGraph  /\  S SubGraph  G )  ->  S  e. UMGraph  )

Proof of Theorem subumgr
Dummy variables  x  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4  |-  (Vtx `  S )  =  (Vtx
`  S )
2 eqid 2622 . . . 4  |-  (Vtx `  G )  =  (Vtx
`  G )
3 eqid 2622 . . . 4  |-  (iEdg `  S )  =  (iEdg `  S )
4 eqid 2622 . . . 4  |-  (iEdg `  G )  =  (iEdg `  G )
5 eqid 2622 . . . 4  |-  (Edg `  S )  =  (Edg
`  S )
61, 2, 3, 4, 5subgrprop2 26166 . . 3  |-  ( S SubGraph  G  ->  ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) ) )
7 umgruhgr 25999 . . . . . . . . . 10  |-  ( G  e. UMGraph  ->  G  e. UHGraph  )
8 subgruhgrfun 26174 . . . . . . . . . 10  |-  ( ( G  e. UHGraph  /\  S SubGraph  G )  ->  Fun  (iEdg `  S
) )
97, 8sylan 488 . . . . . . . . 9  |-  ( ( G  e. UMGraph  /\  S SubGraph  G )  ->  Fun  (iEdg `  S
) )
109ancoms 469 . . . . . . . 8  |-  ( ( S SubGraph  G  /\  G  e. UMGraph  )  ->  Fun  (iEdg `  S
) )
11 funfn 5918 . . . . . . . 8  |-  ( Fun  (iEdg `  S )  <->  (iEdg `  S )  Fn  dom  (iEdg `  S ) )
1210, 11sylib 208 . . . . . . 7  |-  ( ( S SubGraph  G  /\  G  e. UMGraph  )  ->  (iEdg `  S
)  Fn  dom  (iEdg `  S ) )
1312adantl 482 . . . . . 6  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UMGraph  ) )  ->  (iEdg `  S )  Fn  dom  (iEdg `  S ) )
14 simplrl 800 . . . . . . . . 9  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UMGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  ->  S SubGraph  G )
15 simplrr 801 . . . . . . . . 9  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UMGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  ->  G  e. UMGraph  )
16 simpr 477 . . . . . . . . 9  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UMGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  ->  x  e.  dom  (iEdg `  S ) )
171, 3subumgredg2 26177 . . . . . . . . 9  |-  ( ( S SubGraph  G  /\  G  e. UMGraph  /\  x  e.  dom  (iEdg `  S ) )  ->  ( (iEdg `  S ) `  x
)  e.  { e  e.  ~P (Vtx `  S )  |  (
# `  e )  =  2 } )
1814, 15, 16, 17syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UMGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  -> 
( (iEdg `  S
) `  x )  e.  { e  e.  ~P (Vtx `  S )  |  ( # `  e
)  =  2 } )
1918ralrimiva 2966 . . . . . . 7  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UMGraph  ) )  ->  A. x  e.  dom  (iEdg `  S
) ( (iEdg `  S ) `  x
)  e.  { e  e.  ~P (Vtx `  S )  |  (
# `  e )  =  2 } )
20 fnfvrnss 6390 . . . . . . 7  |-  ( ( (iEdg `  S )  Fn  dom  (iEdg `  S
)  /\  A. x  e.  dom  (iEdg `  S
) ( (iEdg `  S ) `  x
)  e.  { e  e.  ~P (Vtx `  S )  |  (
# `  e )  =  2 } )  ->  ran  (iEdg `  S
)  C_  { e  e.  ~P (Vtx `  S
)  |  ( # `  e )  =  2 } )
2113, 19, 20syl2anc 693 . . . . . 6  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UMGraph  ) )  ->  ran  (iEdg `  S )  C_  { e  e.  ~P (Vtx `  S )  |  (
# `  e )  =  2 } )
22 df-f 5892 . . . . . 6  |-  ( (iEdg `  S ) : dom  (iEdg `  S ) --> { e  e.  ~P (Vtx `  S )  |  (
# `  e )  =  2 }  <->  ( (iEdg `  S )  Fn  dom  (iEdg `  S )  /\  ran  (iEdg `  S )  C_ 
{ e  e.  ~P (Vtx `  S )  |  ( # `  e
)  =  2 } ) )
2313, 21, 22sylanbrc 698 . . . . 5  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UMGraph  ) )  ->  (iEdg `  S ) : dom  (iEdg `  S ) --> { e  e.  ~P (Vtx `  S )  |  (
# `  e )  =  2 } )
24 subgrv 26162 . . . . . . 7  |-  ( S SubGraph  G  ->  ( S  e. 
_V  /\  G  e.  _V ) )
251, 3isumgrs 25991 . . . . . . . 8  |-  ( S  e.  _V  ->  ( S  e. UMGraph  <->  (iEdg `  S ) : dom  (iEdg `  S
) --> { e  e. 
~P (Vtx `  S
)  |  ( # `  e )  =  2 } ) )
2625adantr 481 . . . . . . 7  |-  ( ( S  e.  _V  /\  G  e.  _V )  ->  ( S  e. UMGraph  <->  (iEdg `  S
) : dom  (iEdg `  S ) --> { e  e.  ~P (Vtx `  S )  |  (
# `  e )  =  2 } ) )
2724, 26syl 17 . . . . . 6  |-  ( S SubGraph  G  ->  ( S  e. UMGraph  <->  (iEdg `  S ) : dom  (iEdg `  S ) --> { e  e.  ~P (Vtx `  S )  |  (
# `  e )  =  2 } ) )
2827ad2antrl 764 . . . . 5  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UMGraph  ) )  ->  ( S  e. UMGraph  <->  (iEdg `  S ) : dom  (iEdg `  S
) --> { e  e. 
~P (Vtx `  S
)  |  ( # `  e )  =  2 } ) )
2923, 28mpbird 247 . . . 4  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UMGraph  ) )  ->  S  e. UMGraph  )
3029ex 450 . . 3  |-  ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_ 
~P (Vtx `  S
) )  ->  (
( S SubGraph  G  /\  G  e. UMGraph  )  ->  S  e. UMGraph  ) )
316, 30syl 17 . 2  |-  ( S SubGraph  G  ->  ( ( S SubGraph  G  /\  G  e. UMGraph  )  ->  S  e. UMGraph  ) )
3231anabsi8 861 1  |-  ( ( G  e. UMGraph  /\  S SubGraph  G )  ->  S  e. UMGraph  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653   dom cdm 5114   ran crn 5115   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888   2c2 11070   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951   UMGraph cumgr 25976   SubGraph csubgr 26159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-umgr 25978  df-subgr 26160
This theorem is referenced by:  umgrspan  26186
  Copyright terms: Public domain W3C validator