Step | Hyp | Ref
| Expression |
1 | | eqid 2622 |
. . . 4
Vtx  Vtx   |
2 | | eqid 2622 |
. . . 4
Vtx  Vtx   |
3 | | eqid 2622 |
. . . 4
iEdg  iEdg   |
4 | | eqid 2622 |
. . . 4
iEdg  iEdg   |
5 | | eqid 2622 |
. . . 4
Edg  Edg   |
6 | 1, 2, 3, 4, 5 | subgrprop2 26166 |
. . 3
 SubGraph  Vtx  Vtx  iEdg  iEdg  Edg   Vtx     |
7 | | umgruhgr 25999 |
. . . . . . . . . 10
 UMGraph UHGraph  |
8 | | subgruhgrfun 26174 |
. . . . . . . . . 10
  UHGraph
SubGraph 
iEdg    |
9 | 7, 8 | sylan 488 |
. . . . . . . . 9
  UMGraph
SubGraph 
iEdg    |
10 | 9 | ancoms 469 |
. . . . . . . 8
  SubGraph
UMGraph
iEdg    |
11 | | funfn 5918 |
. . . . . . . 8
 iEdg  iEdg  iEdg    |
12 | 10, 11 | sylib 208 |
. . . . . . 7
  SubGraph
UMGraph iEdg  iEdg    |
13 | 12 | adantl 482 |
. . . . . 6
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UMGraph  iEdg  iEdg    |
14 | | simplrl 800 |
. . . . . . . . 9
    Vtx  Vtx  iEdg  iEdg  Edg   Vtx    SubGraph
UMGraph 
iEdg   SubGraph   |
15 | | simplrr 801 |
. . . . . . . . 9
    Vtx  Vtx  iEdg  iEdg  Edg   Vtx    SubGraph
UMGraph 
iEdg  
UMGraph  |
16 | | simpr 477 |
. . . . . . . . 9
    Vtx  Vtx  iEdg  iEdg  Edg   Vtx    SubGraph
UMGraph 
iEdg  
iEdg    |
17 | 1, 3 | subumgredg2 26177 |
. . . . . . . . 9
  SubGraph
UMGraph
iEdg    iEdg       Vtx         |
18 | 14, 15, 16, 17 | syl3anc 1326 |
. . . . . . . 8
    Vtx  Vtx  iEdg  iEdg  Edg   Vtx    SubGraph
UMGraph 
iEdg    iEdg       Vtx         |
19 | 18 | ralrimiva 2966 |
. . . . . . 7
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UMGraph   iEdg    iEdg       Vtx         |
20 | | fnfvrnss 6390 |
. . . . . . 7
  iEdg  iEdg 
 iEdg    iEdg       Vtx       
iEdg 
  Vtx         |
21 | 13, 19, 20 | syl2anc 693 |
. . . . . 6
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UMGraph  iEdg    Vtx         |
22 | | df-f 5892 |
. . . . . 6
 iEdg    iEdg      Vtx      
 iEdg  iEdg  iEdg    Vtx          |
23 | 13, 21, 22 | sylanbrc 698 |
. . . . 5
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UMGraph  iEdg    iEdg      Vtx         |
24 | | subgrv 26162 |
. . . . . . 7
 SubGraph 
   |
25 | 1, 3 | isumgrs 25991 |
. . . . . . . 8
 
UMGraph iEdg    iEdg      Vtx          |
26 | 25 | adantr 481 |
. . . . . . 7
 
  UMGraph
iEdg    iEdg      Vtx          |
27 | 24, 26 | syl 17 |
. . . . . 6
 SubGraph  UMGraph iEdg    iEdg      Vtx          |
28 | 27 | ad2antrl 764 |
. . . . 5
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UMGraph  
UMGraph iEdg    iEdg      Vtx          |
29 | 23, 28 | mpbird 247 |
. . . 4
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UMGraph  UMGraph  |
30 | 29 | ex 450 |
. . 3
  Vtx  Vtx  iEdg  iEdg  Edg   Vtx     SubGraph
UMGraph UMGraph   |
31 | 6, 30 | syl 17 |
. 2
 SubGraph   SubGraph UMGraph UMGraph
  |
32 | 31 | anabsi8 861 |
1
  UMGraph
SubGraph  UMGraph  |