MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglinecom Structured version   Visualization version   Unicode version

Theorem tglinecom 25530
Description: Commutativity law for lines. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p  |-  B  =  ( Base `  G
)
tglineelsb2.i  |-  I  =  (Itv `  G )
tglineelsb2.l  |-  L  =  (LineG `  G )
tglineelsb2.g  |-  ( ph  ->  G  e. TarskiG )
tglineelsb2.1  |-  ( ph  ->  P  e.  B )
tglineelsb2.2  |-  ( ph  ->  Q  e.  B )
tglineelsb2.4  |-  ( ph  ->  P  =/=  Q )
Assertion
Ref Expression
tglinecom  |-  ( ph  ->  ( P L Q )  =  ( Q L P ) )

Proof of Theorem tglinecom
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . . 4  |-  B  =  ( Base `  G
)
2 tglineelsb2.i . . . 4  |-  I  =  (Itv `  G )
3 tglineelsb2.l . . . 4  |-  L  =  (LineG `  G )
4 tglineelsb2.g . . . . 5  |-  ( ph  ->  G  e. TarskiG )
54adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  ( P L Q ) )  ->  G  e. TarskiG )
6 tglineelsb2.2 . . . . 5  |-  ( ph  ->  Q  e.  B )
76adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  ( P L Q ) )  ->  Q  e.  B )
8 tglineelsb2.1 . . . . 5  |-  ( ph  ->  P  e.  B )
98adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  ( P L Q ) )  ->  P  e.  B )
10 tglineelsb2.4 . . . . . 6  |-  ( ph  ->  P  =/=  Q )
111, 3, 2, 4, 8, 6, 10tglnssp 25447 . . . . 5  |-  ( ph  ->  ( P L Q )  C_  B )
1211sselda 3603 . . . 4  |-  ( (
ph  /\  x  e.  ( P L Q ) )  ->  x  e.  B )
1310necomd 2849 . . . . 5  |-  ( ph  ->  Q  =/=  P )
1413adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  ( P L Q ) )  ->  Q  =/=  P )
15 simpr 477 . . . 4  |-  ( (
ph  /\  x  e.  ( P L Q ) )  ->  x  e.  ( P L Q ) )
161, 2, 3, 5, 7, 9, 12, 14, 15lncom 25517 . . 3  |-  ( (
ph  /\  x  e.  ( P L Q ) )  ->  x  e.  ( Q L P ) )
174adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  ( Q L P ) )  ->  G  e. TarskiG )
188adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  ( Q L P ) )  ->  P  e.  B )
196adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  ( Q L P ) )  ->  Q  e.  B )
201, 3, 2, 4, 6, 8, 13tglnssp 25447 . . . . 5  |-  ( ph  ->  ( Q L P )  C_  B )
2120sselda 3603 . . . 4  |-  ( (
ph  /\  x  e.  ( Q L P ) )  ->  x  e.  B )
2210adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  ( Q L P ) )  ->  P  =/=  Q )
23 simpr 477 . . . 4  |-  ( (
ph  /\  x  e.  ( Q L P ) )  ->  x  e.  ( Q L P ) )
241, 2, 3, 17, 18, 19, 21, 22, 23lncom 25517 . . 3  |-  ( (
ph  /\  x  e.  ( Q L P ) )  ->  x  e.  ( P L Q ) )
2516, 24impbida 877 . 2  |-  ( ph  ->  ( x  e.  ( P L Q )  <-> 
x  e.  ( Q L P ) ) )
2625eqrdv 2620 1  |-  ( ph  ->  ( P L Q )  =  ( Q L P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   Basecbs 15857  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352
This theorem is referenced by:  tglinethru  25531  coltr3  25543  footeq  25616  colperpexlem3  25624  mideulem2  25626  opphllem  25627  midex  25629  opphllem3  25641  opphllem5  25643  lmicom  25680  lmiisolem  25688  lnperpex  25695  trgcopy  25696
  Copyright terms: Public domain W3C validator