![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglinecom | Structured version Visualization version Unicode version |
Description: Commutativity law for lines. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tglineelsb2.i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tglineelsb2.l |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tglineelsb2.g |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tglineelsb2.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tglineelsb2.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tglineelsb2.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
tglinecom |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | tglineelsb2.i |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | tglineelsb2.l |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | tglineelsb2.g |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | adantr 481 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | tglineelsb2.2 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 6 | adantr 481 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | tglineelsb2.1 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 8 | adantr 481 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | tglineelsb2.4 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 1, 3, 2, 4, 8, 6, 10 | tglnssp 25447 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 11 | sselda 3603 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 10 | necomd 2849 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 13 | adantr 481 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | simpr 477 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | 1, 2, 3, 5, 7, 9, 12, 14, 15 | lncom 25517 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 4 | adantr 481 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 8 | adantr 481 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 6 | adantr 481 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 1, 3, 2, 4, 6, 8, 13 | tglnssp 25447 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 20 | sselda 3603 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 10 | adantr 481 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | simpr 477 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
24 | 1, 2, 3, 17, 18, 19, 21, 22, 23 | lncom 25517 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 16, 24 | impbida 877 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | 25 | eqrdv 2620 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-trkgc 25347 df-trkgb 25348 df-trkgcb 25349 df-trkg 25352 |
This theorem is referenced by: tglinethru 25531 coltr3 25543 footeq 25616 colperpexlem3 25624 mideulem2 25626 opphllem 25627 midex 25629 opphllem3 25641 opphllem5 25643 lmicom 25680 lmiisolem 25688 lnperpex 25695 trgcopy 25696 |
Copyright terms: Public domain | W3C validator |