MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  midex Structured version   Visualization version   Unicode version

Theorem midex 25629
Description: Existence of the midpoint, part Theorem 8.22 of [Schwabhauser] p. 64. Note that this proof requires a construction in 2 dimensions or more, i.e. it does not prove the existence of a midpoint in dimension 1, for a geometry restricted to a line. (Contributed by Thierry Arnoux, 25-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p  |-  P  =  ( Base `  G
)
colperpex.d  |-  .-  =  ( dist `  G )
colperpex.i  |-  I  =  (Itv `  G )
colperpex.l  |-  L  =  (LineG `  G )
colperpex.g  |-  ( ph  ->  G  e. TarskiG )
mideu.s  |-  S  =  (pInvG `  G )
mideu.1  |-  ( ph  ->  A  e.  P )
mideu.2  |-  ( ph  ->  B  e.  P )
mideu.3  |-  ( ph  ->  GDimTarskiG 2 )
Assertion
Ref Expression
midex  |-  ( ph  ->  E. x  e.  P  B  =  ( ( S `  x ) `  A ) )
Distinct variable groups:    x,  .-    x, A   
x, B    x, G    x, I    x, L    x, P    x, S    ph, x

Proof of Theorem midex
Dummy variables  p  q  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mideu.1 . . . 4  |-  ( ph  ->  A  e.  P )
21adantr 481 . . 3  |-  ( (
ph  /\  A  =  B )  ->  A  e.  P )
3 colperpex.p . . . . 5  |-  P  =  ( Base `  G
)
4 colperpex.d . . . . 5  |-  .-  =  ( dist `  G )
5 colperpex.i . . . . 5  |-  I  =  (Itv `  G )
6 colperpex.l . . . . 5  |-  L  =  (LineG `  G )
7 mideu.s . . . . 5  |-  S  =  (pInvG `  G )
8 colperpex.g . . . . . 6  |-  ( ph  ->  G  e. TarskiG )
98adantr 481 . . . . 5  |-  ( (
ph  /\  A  =  B )  ->  G  e. TarskiG )
10 eqid 2622 . . . . 5  |-  ( S `
 A )  =  ( S `  A
)
113, 4, 5, 6, 7, 9, 2, 10mircinv 25563 . . . 4  |-  ( (
ph  /\  A  =  B )  ->  (
( S `  A
) `  A )  =  A )
12 simpr 477 . . . 4  |-  ( (
ph  /\  A  =  B )  ->  A  =  B )
1311, 12eqtr2d 2657 . . 3  |-  ( (
ph  /\  A  =  B )  ->  B  =  ( ( S `
 A ) `  A ) )
14 fveq2 6191 . . . . . 6  |-  ( x  =  A  ->  ( S `  x )  =  ( S `  A ) )
1514fveq1d 6193 . . . . 5  |-  ( x  =  A  ->  (
( S `  x
) `  A )  =  ( ( S `
 A ) `  A ) )
1615eqeq2d 2632 . . . 4  |-  ( x  =  A  ->  ( B  =  ( ( S `  x ) `  A )  <->  B  =  ( ( S `  A ) `  A
) ) )
1716rspcev 3309 . . 3  |-  ( ( A  e.  P  /\  B  =  ( ( S `  A ) `  A ) )  ->  E. x  e.  P  B  =  ( ( S `  x ) `  A ) )
182, 13, 17syl2anc 693 . 2  |-  ( (
ph  /\  A  =  B )  ->  E. x  e.  P  B  =  ( ( S `  x ) `  A
) )
198adantr 481 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  B )  ->  G  e. TarskiG )
2019ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  ->  G  e. TarskiG )
2120ad4antr 768 . . . . . 6  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  G  e. TarskiG )
221adantr 481 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  B )  ->  A  e.  P )
2322ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  ->  A  e.  P )
2423ad4antr 768 . . . . . 6  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  A  e.  P
)
25 mideu.2 . . . . . . . . 9  |-  ( ph  ->  B  e.  P )
2625adantr 481 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  B )  ->  B  e.  P )
2726ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  ->  B  e.  P )
2827ad4antr 768 . . . . . 6  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  B  e.  P
)
29 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  B )  ->  A  =/=  B )
3029ad2antrr 762 . . . . . . 7  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  ->  A  =/=  B )
3130ad4antr 768 . . . . . 6  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  A  =/=  B
)
32 simplr 792 . . . . . . 7  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  -> 
q  e.  P )
3332ad4antr 768 . . . . . 6  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  q  e.  P
)
34 simp-4r 807 . . . . . 6  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  p  e.  P
)
35 simpllr 799 . . . . . 6  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  t  e.  P
)
36 simp-5r 809 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  ( B L q ) (⟂G `  G
) ( A L B ) )
376, 21, 36perpln1 25605 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  ( B L q )  e.  ran  L )
383, 5, 6, 21, 24, 28, 31tgelrnln 25525 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  ( A L B )  e.  ran  L )
393, 4, 5, 6, 21, 37, 38, 36perpcom 25608 . . . . . . 7  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  ( A L B ) (⟂G `  G
) ( B L q ) )
403, 5, 6, 21, 28, 33, 37tglnne 25523 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  B  =/=  q
)
413, 5, 6, 21, 28, 33, 40tglinecom 25530 . . . . . . 7  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  ( B L q )  =  ( q L B ) )
4239, 41breqtrd 4679 . . . . . 6  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  ( A L B ) (⟂G `  G
) ( q L B ) )
43 simplr 792 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )
4443simpld 475 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  ( A L p ) (⟂G `  G
) ( A L B ) )
456, 21, 44perpln1 25605 . . . . . . 7  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  ( A L p )  e.  ran  L )
463, 4, 5, 6, 21, 45, 38, 44perpcom 25608 . . . . . 6  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  ( A L B ) (⟂G `  G
) ( A L p ) )
4731neneqd 2799 . . . . . . 7  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  -.  A  =  B )
4843simprd 479 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) )
4948simpld 475 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  ( t  e.  ( A L B )  \/  A  =  B ) )
5049orcomd 403 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  ( A  =  B  \/  t  e.  ( A L B ) ) )
5150ord 392 . . . . . . 7  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  ( -.  A  =  B  ->  t  e.  ( A L B ) ) )
5247, 51mpd 15 . . . . . 6  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  t  e.  ( A L B ) )
5348simprd 479 . . . . . 6  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  t  e.  ( q I p ) )
54 simpr 477 . . . . . 6  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )
553, 4, 5, 6, 21, 7, 24, 28, 31, 33, 34, 35, 42, 46, 52, 53, 54mideulem 25628 . . . . 5  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( A  .-  p ) (≤G `  G ) ( B 
.-  q ) )  ->  E. x  e.  P  B  =  ( ( S `  x ) `  A ) )
5620ad4antr 768 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  G  e. TarskiG )
5756adantr 481 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P
)  /\  ( B L q ) (⟂G `  G ) ( A L B ) )  /\  p  e.  P
)  /\  t  e.  P )  /\  (
( A L p ) (⟂G `  G
) ( A L B )  /\  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  /\  ( x  e.  P  /\  A  =  ( ( S `  x ) `  B
) ) )  ->  G  e. TarskiG )
58 simprl 794 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P
)  /\  ( B L q ) (⟂G `  G ) ( A L B ) )  /\  p  e.  P
)  /\  t  e.  P )  /\  (
( A L p ) (⟂G `  G
) ( A L B )  /\  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  /\  ( x  e.  P  /\  A  =  ( ( S `  x ) `  B
) ) )  ->  x  e.  P )
59 eqid 2622 . . . . . . . 8  |-  ( S `
 x )  =  ( S `  x
)
6027ad4antr 768 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  B  e.  P
)
6160adantr 481 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P
)  /\  ( B L q ) (⟂G `  G ) ( A L B ) )  /\  p  e.  P
)  /\  t  e.  P )  /\  (
( A L p ) (⟂G `  G
) ( A L B )  /\  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  /\  ( x  e.  P  /\  A  =  ( ( S `  x ) `  B
) ) )  ->  B  e.  P )
62 simprr 796 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P
)  /\  ( B L q ) (⟂G `  G ) ( A L B ) )  /\  p  e.  P
)  /\  t  e.  P )  /\  (
( A L p ) (⟂G `  G
) ( A L B )  /\  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  /\  ( x  e.  P  /\  A  =  ( ( S `  x ) `  B
) ) )  ->  A  =  ( ( S `  x ) `  B ) )
6362eqcomd 2628 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P
)  /\  ( B L q ) (⟂G `  G ) ( A L B ) )  /\  p  e.  P
)  /\  t  e.  P )  /\  (
( A L p ) (⟂G `  G
) ( A L B )  /\  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  /\  ( x  e.  P  /\  A  =  ( ( S `  x ) `  B
) ) )  -> 
( ( S `  x ) `  B
)  =  A )
643, 4, 5, 6, 7, 57, 58, 59, 61, 63mircom 25558 . . . . . . 7  |-  ( ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P
)  /\  ( B L q ) (⟂G `  G ) ( A L B ) )  /\  p  e.  P
)  /\  t  e.  P )  /\  (
( A L p ) (⟂G `  G
) ( A L B )  /\  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  /\  ( x  e.  P  /\  A  =  ( ( S `  x ) `  B
) ) )  -> 
( ( S `  x ) `  A
)  =  B )
6564eqcomd 2628 . . . . . 6  |-  ( ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P
)  /\  ( B L q ) (⟂G `  G ) ( A L B ) )  /\  p  e.  P
)  /\  t  e.  P )  /\  (
( A L p ) (⟂G `  G
) ( A L B )  /\  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  /\  ( x  e.  P  /\  A  =  ( ( S `  x ) `  B
) ) )  ->  B  =  ( ( S `  x ) `  A ) )
6623ad4antr 768 . . . . . . 7  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  A  e.  P
)
6730ad4antr 768 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  A  =/=  B
)
6867necomd 2849 . . . . . . 7  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  B  =/=  A
)
69 simp-4r 807 . . . . . . 7  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  p  e.  P
)
7032ad4antr 768 . . . . . . 7  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  q  e.  P
)
71 simpllr 799 . . . . . . 7  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  t  e.  P
)
72 simplr 792 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )
7372simpld 475 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  ( A L p ) (⟂G `  G
) ( A L B ) )
746, 56, 73perpln1 25605 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  ( A L p )  e.  ran  L )
753, 5, 6, 56, 66, 69, 74tglnne 25523 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  A  =/=  p
)
763, 5, 6, 56, 66, 69, 75tglinecom 25530 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  ( A L p )  =  ( p L A ) )
7776eqcomd 2628 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  ( p L A )  =  ( A L p ) )
7877, 74eqeltrd 2701 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  ( p L A )  e.  ran  L )
793, 5, 6, 56, 60, 66, 68tgelrnln 25525 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  ( B L A )  e.  ran  L )
803, 5, 6, 56, 66, 60, 67tglinecom 25530 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  ( A L B )  =  ( B L A ) )
8173, 76, 803brtr3d 4684 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  ( p L A ) (⟂G `  G
) ( B L A ) )
823, 4, 5, 6, 56, 78, 79, 81perpcom 25608 . . . . . . 7  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  ( B L A ) (⟂G `  G
) ( p L A ) )
83 simp-5r 809 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  ( B L q ) (⟂G `  G
) ( A L B ) )
846, 56, 83perpln1 25605 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  ( B L q )  e.  ran  L )
8583, 80breqtrd 4679 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  ( B L q ) (⟂G `  G
) ( B L A ) )
863, 4, 5, 6, 56, 84, 79, 85perpcom 25608 . . . . . . 7  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  ( B L A ) (⟂G `  G
) ( B L q ) )
8767neneqd 2799 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  -.  A  =  B )
8872simprd 479 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) )
8988simpld 475 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  ( t  e.  ( A L B )  \/  A  =  B ) )
9089orcomd 403 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  ( A  =  B  \/  t  e.  ( A L B ) ) )
9190ord 392 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  ( -.  A  =  B  ->  t  e.  ( A L B ) ) )
9287, 91mpd 15 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  t  e.  ( A L B ) )
9392, 80eleqtrd 2703 . . . . . . 7  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  t  e.  ( B L A ) )
9488simprd 479 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  t  e.  ( q I p ) )
953, 4, 5, 56, 70, 71, 69, 94tgbtwncom 25383 . . . . . . 7  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  t  e.  ( p I q ) )
96 simpr 477 . . . . . . 7  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )
973, 4, 5, 6, 56, 7, 60, 66, 68, 69, 70, 71, 82, 86, 93, 95, 96mideulem 25628 . . . . . 6  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  E. x  e.  P  A  =  ( ( S `  x ) `  B ) )
9865, 97reximddv 3018 . . . . 5  |-  ( ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  /\  p  e.  P )  /\  t  e.  P
)  /\  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  /\  ( B  .-  q ) (≤G `  G ) ( A 
.-  p ) )  ->  E. x  e.  P  B  =  ( ( S `  x ) `  A ) )
99 eqid 2622 . . . . . 6  |-  (≤G `  G )  =  (≤G `  G )
10020ad3antrrr 766 . . . . . 6  |-  ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G ) ( A L B ) )  /\  p  e.  P
)  /\  t  e.  P )  /\  (
( A L p ) (⟂G `  G
) ( A L B )  /\  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  ->  G  e. TarskiG )
10123ad3antrrr 766 . . . . . 6  |-  ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G ) ( A L B ) )  /\  p  e.  P
)  /\  t  e.  P )  /\  (
( A L p ) (⟂G `  G
) ( A L B )  /\  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  ->  A  e.  P
)
102 simpllr 799 . . . . . 6  |-  ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G ) ( A L B ) )  /\  p  e.  P
)  /\  t  e.  P )  /\  (
( A L p ) (⟂G `  G
) ( A L B )  /\  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  ->  p  e.  P
)
10327ad3antrrr 766 . . . . . 6  |-  ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G ) ( A L B ) )  /\  p  e.  P
)  /\  t  e.  P )  /\  (
( A L p ) (⟂G `  G
) ( A L B )  /\  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  ->  B  e.  P
)
10432ad3antrrr 766 . . . . . 6  |-  ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G ) ( A L B ) )  /\  p  e.  P
)  /\  t  e.  P )  /\  (
( A L p ) (⟂G `  G
) ( A L B )  /\  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  ->  q  e.  P
)
1053, 4, 5, 99, 100, 101, 102, 103, 104legtrid 25486 . . . . 5  |-  ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G ) ( A L B ) )  /\  p  e.  P
)  /\  t  e.  P )  /\  (
( A L p ) (⟂G `  G
) ( A L B )  /\  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  ->  ( ( A 
.-  p ) (≤G `  G ) ( B 
.-  q )  \/  ( B  .-  q
) (≤G `  G
) ( A  .-  p ) ) )
10655, 98, 105mpjaodan 827 . . . 4  |-  ( ( ( ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G ) ( A L B ) )  /\  p  e.  P
)  /\  t  e.  P )  /\  (
( A L p ) (⟂G `  G
) ( A L B )  /\  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )  ->  E. x  e.  P  B  =  ( ( S `  x ) `  A ) )
107 mideu.3 . . . . . . . 8  |-  ( ph  ->  GDimTarskiG 2 )
108107adantr 481 . . . . . . 7  |-  ( (
ph  /\  A  =/=  B )  ->  GDimTarskiG 2 )
109108ad2antrr 762 . . . . . 6  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  ->  GDimTarskiG 2 )
1103, 4, 5, 6, 20, 23, 27, 32, 30, 109colperpex 25625 . . . . 5  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  ->  E. p  e.  P  ( ( A L p ) (⟂G `  G
) ( A L B )  /\  E. t  e.  P  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )
111 r19.42v 3092 . . . . . 6  |-  ( E. t  e.  P  ( ( A L p ) (⟂G `  G
) ( A L B )  /\  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) )  <->  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  E. t  e.  P  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )
112111rexbii 3041 . . . . 5  |-  ( E. p  e.  P  E. t  e.  P  (
( A L p ) (⟂G `  G
) ( A L B )  /\  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) )  <->  E. p  e.  P  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  E. t  e.  P  ( ( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )
113110, 112sylibr 224 . . . 4  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  ->  E. p  e.  P  E. t  e.  P  ( ( A L p ) (⟂G `  G
) ( A L B )  /\  (
( t  e.  ( A L B )  \/  A  =  B )  /\  t  e.  ( q I p ) ) ) )
114106, 113r19.29vva 3081 . . 3  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  q  e.  P )  /\  ( B L q ) (⟂G `  G
) ( A L B ) )  ->  E. x  e.  P  B  =  ( ( S `  x ) `  A ) )
11529necomd 2849 . . . . 5  |-  ( (
ph  /\  A  =/=  B )  ->  B  =/=  A )
1163, 4, 5, 6, 19, 26, 22, 22, 115, 108colperpex 25625 . . . 4  |-  ( (
ph  /\  A  =/=  B )  ->  E. q  e.  P  ( ( B L q ) (⟂G `  G ) ( B L A )  /\  E. s  e.  P  ( ( s  e.  ( B L A )  \/  B  =  A )  /\  s  e.  ( A I q ) ) ) )
117 simprl 794 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  B )  /\  (
( B L q ) (⟂G `  G
) ( B L A )  /\  E. s  e.  P  (
( s  e.  ( B L A )  \/  B  =  A )  /\  s  e.  ( A I q ) ) ) )  ->  ( B L q ) (⟂G `  G
) ( B L A ) )
1183, 5, 6, 19, 22, 26, 29tglinecom 25530 . . . . . . . 8  |-  ( (
ph  /\  A  =/=  B )  ->  ( A L B )  =  ( B L A ) )
119118adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  B )  /\  (
( B L q ) (⟂G `  G
) ( B L A )  /\  E. s  e.  P  (
( s  e.  ( B L A )  \/  B  =  A )  /\  s  e.  ( A I q ) ) ) )  ->  ( A L B )  =  ( B L A ) )
120117, 119breqtrrd 4681 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  B )  /\  (
( B L q ) (⟂G `  G
) ( B L A )  /\  E. s  e.  P  (
( s  e.  ( B L A )  \/  B  =  A )  /\  s  e.  ( A I q ) ) ) )  ->  ( B L q ) (⟂G `  G
) ( A L B ) )
121120ex 450 . . . . 5  |-  ( (
ph  /\  A  =/=  B )  ->  ( (
( B L q ) (⟂G `  G
) ( B L A )  /\  E. s  e.  P  (
( s  e.  ( B L A )  \/  B  =  A )  /\  s  e.  ( A I q ) ) )  -> 
( B L q ) (⟂G `  G
) ( A L B ) ) )
122121reximdv 3016 . . . 4  |-  ( (
ph  /\  A  =/=  B )  ->  ( E. q  e.  P  (
( B L q ) (⟂G `  G
) ( B L A )  /\  E. s  e.  P  (
( s  e.  ( B L A )  \/  B  =  A )  /\  s  e.  ( A I q ) ) )  ->  E. q  e.  P  ( B L q ) (⟂G `  G )
( A L B ) ) )
123116, 122mpd 15 . . 3  |-  ( (
ph  /\  A  =/=  B )  ->  E. q  e.  P  ( B L q ) (⟂G `  G ) ( A L B ) )
124114, 123r19.29a 3078 . 2  |-  ( (
ph  /\  A  =/=  B )  ->  E. x  e.  P  B  =  ( ( S `  x ) `  A
) )
12518, 124pm2.61dane 2881 1  |-  ( ph  ->  E. x  e.  P  B  =  ( ( S `  x ) `  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653   ran crn 5115   ` cfv 5888  (class class class)co 6650   2c2 11070   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  DimTarskiGcstrkgld 25333  Itvcitv 25335  LineGclng 25336  ≤Gcleg 25477  pInvGcmir 25547  ⟂Gcperpg 25590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkgld 25351  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-mir 25548  df-rag 25589  df-perpg 25591
This theorem is referenced by:  mideu  25630  opphllem5  25643  opphl  25646
  Copyright terms: Public domain W3C validator