MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmiisolem Structured version   Visualization version   Unicode version

Theorem lmiisolem 25688
Description: Lemma for lmiiso 25689. (Contributed by Thierry Arnoux, 14-Dec-2019.)
Hypotheses
Ref Expression
ismid.p  |-  P  =  ( Base `  G
)
ismid.d  |-  .-  =  ( dist `  G )
ismid.i  |-  I  =  (Itv `  G )
ismid.g  |-  ( ph  ->  G  e. TarskiG )
ismid.1  |-  ( ph  ->  GDimTarskiG 2 )
lmif.m  |-  M  =  ( (lInvG `  G
) `  D )
lmif.l  |-  L  =  (LineG `  G )
lmif.d  |-  ( ph  ->  D  e.  ran  L
)
lmiiso.1  |-  ( ph  ->  A  e.  P )
lmiiso.2  |-  ( ph  ->  B  e.  P )
lmiisolem.s  |-  S  =  ( (pInvG `  G
) `  Z )
lmiisolem.z  |-  Z  =  ( ( A (midG `  G ) ( M `
 A ) ) (midG `  G )
( B (midG `  G ) ( M `
 B ) ) )
Assertion
Ref Expression
lmiisolem  |-  ( ph  ->  ( ( M `  A )  .-  ( M `  B )
)  =  ( A 
.-  B ) )

Proof of Theorem lmiisolem
StepHypRef Expression
1 ismid.p . . . . . . . 8  |-  P  =  ( Base `  G
)
2 ismid.d . . . . . . . 8  |-  .-  =  ( dist `  G )
3 ismid.i . . . . . . . 8  |-  I  =  (Itv `  G )
4 ismid.g . . . . . . . . 9  |-  ( ph  ->  G  e. TarskiG )
54adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( S `  A )  =  Z )  ->  G  e. TarskiG )
6 lmiisolem.z . . . . . . . . . 10  |-  Z  =  ( ( A (midG `  G ) ( M `
 A ) ) (midG `  G )
( B (midG `  G ) ( M `
 B ) ) )
7 ismid.1 . . . . . . . . . . 11  |-  ( ph  ->  GDimTarskiG 2 )
8 lmiiso.1 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  P )
9 lmif.m . . . . . . . . . . . . 13  |-  M  =  ( (lInvG `  G
) `  D )
10 lmif.l . . . . . . . . . . . . 13  |-  L  =  (LineG `  G )
11 lmif.d . . . . . . . . . . . . 13  |-  ( ph  ->  D  e.  ran  L
)
121, 2, 3, 4, 7, 9, 10, 11, 8lmicl 25678 . . . . . . . . . . . 12  |-  ( ph  ->  ( M `  A
)  e.  P )
131, 2, 3, 4, 7, 8, 12midcl 25669 . . . . . . . . . . 11  |-  ( ph  ->  ( A (midG `  G ) ( M `
 A ) )  e.  P )
14 lmiiso.2 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  P )
151, 2, 3, 4, 7, 9, 10, 11, 14lmicl 25678 . . . . . . . . . . . 12  |-  ( ph  ->  ( M `  B
)  e.  P )
161, 2, 3, 4, 7, 14, 15midcl 25669 . . . . . . . . . . 11  |-  ( ph  ->  ( B (midG `  G ) ( M `
 B ) )  e.  P )
171, 2, 3, 4, 7, 13, 16midcl 25669 . . . . . . . . . 10  |-  ( ph  ->  ( ( A (midG `  G ) ( M `
 A ) ) (midG `  G )
( B (midG `  G ) ( M `
 B ) ) )  e.  P )
186, 17syl5eqel 2705 . . . . . . . . 9  |-  ( ph  ->  Z  e.  P )
1918adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( S `  A )  =  Z )  ->  Z  e.  P )
20 eqid 2622 . . . . . . . . . 10  |-  (pInvG `  G )  =  (pInvG `  G )
21 lmiisolem.s . . . . . . . . . 10  |-  S  =  ( (pInvG `  G
) `  Z )
221, 2, 3, 10, 20, 4, 18, 21, 8mircl 25556 . . . . . . . . 9  |-  ( ph  ->  ( S `  A
)  e.  P )
2322adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( S `  A )  =  Z )  ->  ( S `  A )  e.  P
)
248adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( S `  A )  =  Z )  ->  A  e.  P )
251, 2, 3, 10, 20, 5, 19, 21, 24mircgr 25552 . . . . . . . 8  |-  ( (
ph  /\  ( S `  A )  =  Z )  ->  ( Z  .-  ( S `  A
) )  =  ( Z  .-  A ) )
26 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  ( S `  A )  =  Z )  ->  ( S `  A )  =  Z )
2726eqcomd 2628 . . . . . . . 8  |-  ( (
ph  /\  ( S `  A )  =  Z )  ->  Z  =  ( S `  A ) )
281, 2, 3, 5, 19, 23, 19, 24, 25, 27tgcgreq 25377 . . . . . . 7  |-  ( (
ph  /\  ( S `  A )  =  Z )  ->  Z  =  A )
29 simpr 477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =  ( B (midG `  G
) ( M `  B ) ) )  ->  ( A (midG `  G ) ( M `
 A ) )  =  ( B (midG `  G ) ( M `
 B ) ) )
3029oveq2d 6666 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =  ( B (midG `  G
) ( M `  B ) ) )  ->  ( ( A (midG `  G )
( M `  A
) ) (midG `  G ) ( A (midG `  G )
( M `  A
) ) )  =  ( ( A (midG `  G ) ( M `
 A ) ) (midG `  G )
( B (midG `  G ) ( M `
 B ) ) ) )
3130, 6syl6reqr 2675 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =  ( B (midG `  G
) ( M `  B ) ) )  ->  Z  =  ( ( A (midG `  G ) ( M `
 A ) ) (midG `  G )
( A (midG `  G ) ( M `
 A ) ) ) )
324adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =  ( B (midG `  G
) ( M `  B ) ) )  ->  G  e. TarskiG )
337adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =  ( B (midG `  G
) ( M `  B ) ) )  ->  GDimTarskiG 2 )
3413adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =  ( B (midG `  G
) ( M `  B ) ) )  ->  ( A (midG `  G ) ( M `
 A ) )  e.  P )
351, 2, 3, 32, 33, 34, 34midid 25673 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =  ( B (midG `  G
) ( M `  B ) ) )  ->  ( ( A (midG `  G )
( M `  A
) ) (midG `  G ) ( A (midG `  G )
( M `  A
) ) )  =  ( A (midG `  G ) ( M `
 A ) ) )
3631, 35eqtrd 2656 . . . . . . . . . 10  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =  ( B (midG `  G
) ( M `  B ) ) )  ->  Z  =  ( A (midG `  G
) ( M `  A ) ) )
37 eqidd 2623 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M `  A
)  =  ( M `
 A ) )
381, 2, 3, 4, 7, 9, 10, 11, 8, 12islmib 25679 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( M `  A )  =  ( M `  A )  <-> 
( ( A (midG `  G ) ( M `
 A ) )  e.  D  /\  ( D (⟂G `  G )
( A L ( M `  A ) )  \/  A  =  ( M `  A
) ) ) ) )
3937, 38mpbid 222 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A (midG `  G ) ( M `
 A ) )  e.  D  /\  ( D (⟂G `  G )
( A L ( M `  A ) )  \/  A  =  ( M `  A
) ) ) )
4039simpld 475 . . . . . . . . . . 11  |-  ( ph  ->  ( A (midG `  G ) ( M `
 A ) )  e.  D )
4140adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =  ( B (midG `  G
) ( M `  B ) ) )  ->  ( A (midG `  G ) ( M `
 A ) )  e.  D )
4236, 41eqeltrd 2701 . . . . . . . . 9  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =  ( B (midG `  G
) ( M `  B ) ) )  ->  Z  e.  D
)
434adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =/=  ( B (midG `  G )
( M `  B
) ) )  ->  G  e. TarskiG )
4413adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =/=  ( B (midG `  G )
( M `  B
) ) )  -> 
( A (midG `  G ) ( M `
 A ) )  e.  P )
4516adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =/=  ( B (midG `  G )
( M `  B
) ) )  -> 
( B (midG `  G ) ( M `
 B ) )  e.  P )
4618adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =/=  ( B (midG `  G )
( M `  B
) ) )  ->  Z  e.  P )
47 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =/=  ( B (midG `  G )
( M `  B
) ) )  -> 
( A (midG `  G ) ( M `
 A ) )  =/=  ( B (midG `  G ) ( M `
 B ) ) )
481, 2, 3, 4, 7, 13, 16midbtwn 25671 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A (midG `  G ) ( M `
 A ) ) (midG `  G )
( B (midG `  G ) ( M `
 B ) ) )  e.  ( ( A (midG `  G
) ( M `  A ) ) I ( B (midG `  G ) ( M `
 B ) ) ) )
496, 48syl5eqel 2705 . . . . . . . . . . . 12  |-  ( ph  ->  Z  e.  ( ( A (midG `  G
) ( M `  A ) ) I ( B (midG `  G ) ( M `
 B ) ) ) )
5049adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =/=  ( B (midG `  G )
( M `  B
) ) )  ->  Z  e.  ( ( A (midG `  G )
( M `  A
) ) I ( B (midG `  G
) ( M `  B ) ) ) )
511, 3, 10, 43, 44, 45, 46, 47, 50btwnlng1 25514 . . . . . . . . . 10  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =/=  ( B (midG `  G )
( M `  B
) ) )  ->  Z  e.  ( ( A (midG `  G )
( M `  A
) ) L ( B (midG `  G
) ( M `  B ) ) ) )
5211adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =/=  ( B (midG `  G )
( M `  B
) ) )  ->  D  e.  ran  L )
5340adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =/=  ( B (midG `  G )
( M `  B
) ) )  -> 
( A (midG `  G ) ( M `
 A ) )  e.  D )
54 eqidd 2623 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M `  B
)  =  ( M `
 B ) )
551, 2, 3, 4, 7, 9, 10, 11, 14, 15islmib 25679 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( M `  B )  =  ( M `  B )  <-> 
( ( B (midG `  G ) ( M `
 B ) )  e.  D  /\  ( D (⟂G `  G )
( B L ( M `  B ) )  \/  B  =  ( M `  B
) ) ) ) )
5654, 55mpbid 222 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( B (midG `  G ) ( M `
 B ) )  e.  D  /\  ( D (⟂G `  G )
( B L ( M `  B ) )  \/  B  =  ( M `  B
) ) ) )
5756simpld 475 . . . . . . . . . . . 12  |-  ( ph  ->  ( B (midG `  G ) ( M `
 B ) )  e.  D )
5857adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =/=  ( B (midG `  G )
( M `  B
) ) )  -> 
( B (midG `  G ) ( M `
 B ) )  e.  D )
591, 3, 10, 43, 44, 45, 47, 47, 52, 53, 58tglinethru 25531 . . . . . . . . . 10  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =/=  ( B (midG `  G )
( M `  B
) ) )  ->  D  =  ( ( A (midG `  G )
( M `  A
) ) L ( B (midG `  G
) ( M `  B ) ) ) )
6051, 59eleqtrrd 2704 . . . . . . . . 9  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =/=  ( B (midG `  G )
( M `  B
) ) )  ->  Z  e.  D )
6142, 60pm2.61dane 2881 . . . . . . . 8  |-  ( ph  ->  Z  e.  D )
6261adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( S `  A )  =  Z )  ->  Z  e.  D )
6328, 62eqeltrrd 2702 . . . . . 6  |-  ( (
ph  /\  ( S `  A )  =  Z )  ->  A  e.  D )
641, 2, 3, 4, 7, 9, 10, 11, 8lmiinv 25684 . . . . . . 7  |-  ( ph  ->  ( ( M `  A )  =  A  <-> 
A  e.  D ) )
6564biimpar 502 . . . . . 6  |-  ( (
ph  /\  A  e.  D )  ->  ( M `  A )  =  A )
6663, 65syldan 487 . . . . 5  |-  ( (
ph  /\  ( S `  A )  =  Z )  ->  ( M `  A )  =  A )
6766, 28eqtr4d 2659 . . . 4  |-  ( (
ph  /\  ( S `  A )  =  Z )  ->  ( M `  A )  =  Z )
6867oveq1d 6665 . . 3  |-  ( (
ph  /\  ( S `  A )  =  Z )  ->  ( ( M `  A )  .-  ( M `  B
) )  =  ( Z  .-  ( M `
 B ) ) )
69 eqidd 2623 . . . . . . . . 9  |-  ( (
ph  /\  B  =  ( M `  B ) )  ->  Z  =  Z )
704adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  B  =  ( M `  B ) )  ->  G  e. TarskiG )
7114adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  B  =  ( M `  B ) )  ->  B  e.  P )
7216adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  B  =  ( M `  B ) )  ->  ( B
(midG `  G )
( M `  B
) )  e.  P
)
731, 2, 3, 4, 7, 14, 15midbtwn 25671 . . . . . . . . . . . 12  |-  ( ph  ->  ( B (midG `  G ) ( M `
 B ) )  e.  ( B I ( M `  B
) ) )
7473adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  B  =  ( M `  B ) )  ->  ( B
(midG `  G )
( M `  B
) )  e.  ( B I ( M `
 B ) ) )
75 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  B  =  ( M `  B ) )  ->  B  =  ( M `  B ) )
7675oveq2d 6666 . . . . . . . . . . 11  |-  ( (
ph  /\  B  =  ( M `  B ) )  ->  ( B I B )  =  ( B I ( M `
 B ) ) )
7774, 76eleqtrrd 2704 . . . . . . . . . 10  |-  ( (
ph  /\  B  =  ( M `  B ) )  ->  ( B
(midG `  G )
( M `  B
) )  e.  ( B I B ) )
781, 2, 3, 70, 71, 72, 77axtgbtwnid 25365 . . . . . . . . 9  |-  ( (
ph  /\  B  =  ( M `  B ) )  ->  B  =  ( B (midG `  G
) ( M `  B ) ) )
79 eqidd 2623 . . . . . . . . 9  |-  ( (
ph  /\  B  =  ( M `  B ) )  ->  B  =  B )
8069, 78, 79s3eqd 13609 . . . . . . . 8  |-  ( (
ph  /\  B  =  ( M `  B ) )  ->  <" Z B B ">  =  <" Z ( B (midG `  G )
( M `  B
) ) B "> )
811, 2, 3, 10, 20, 4, 18, 14, 14ragtrivb 25597 . . . . . . . . 9  |-  ( ph  ->  <" Z B B ">  e.  (∟G `  G ) )
8281adantr 481 . . . . . . . 8  |-  ( (
ph  /\  B  =  ( M `  B ) )  ->  <" Z B B ">  e.  (∟G `  G ) )
8380, 82eqeltrrd 2702 . . . . . . 7  |-  ( (
ph  /\  B  =  ( M `  B ) )  ->  <" Z
( B (midG `  G ) ( M `
 B ) ) B ">  e.  (∟G `  G ) )
844adantr 481 . . . . . . . 8  |-  ( (
ph  /\  B  =/=  ( M `  B ) )  ->  G  e. TarskiG )
8561adantr 481 . . . . . . . 8  |-  ( (
ph  /\  B  =/=  ( M `  B ) )  ->  Z  e.  D )
8657adantr 481 . . . . . . . 8  |-  ( (
ph  /\  B  =/=  ( M `  B ) )  ->  ( B
(midG `  G )
( M `  B
) )  e.  D
)
8714adantr 481 . . . . . . . 8  |-  ( (
ph  /\  B  =/=  ( M `  B ) )  ->  B  e.  P )
88 df-ne 2795 . . . . . . . . . 10  |-  ( B  =/=  ( M `  B )  <->  -.  B  =  ( M `  B ) )
8956simprd 479 . . . . . . . . . . . 12  |-  ( ph  ->  ( D (⟂G `  G
) ( B L ( M `  B
) )  \/  B  =  ( M `  B ) ) )
9089orcomd 403 . . . . . . . . . . 11  |-  ( ph  ->  ( B  =  ( M `  B )  \/  D (⟂G `  G
) ( B L ( M `  B
) ) ) )
9190orcanai 952 . . . . . . . . . 10  |-  ( (
ph  /\  -.  B  =  ( M `  B ) )  ->  D (⟂G `  G )
( B L ( M `  B ) ) )
9288, 91sylan2b 492 . . . . . . . . 9  |-  ( (
ph  /\  B  =/=  ( M `  B ) )  ->  D (⟂G `  G ) ( B L ( M `  B ) ) )
9315adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  B  =/=  ( M `  B ) )  ->  ( M `  B )  e.  P
)
94 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  B  =/=  ( M `  B ) )  ->  B  =/=  ( M `  B ) )
9516adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  B  =/=  ( M `  B ) )  ->  ( B
(midG `  G )
( M `  B
) )  e.  P
)
964adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( B
(midG `  G )
( M `  B
) )  =  B )  ->  G  e. TarskiG )
9714adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( B
(midG `  G )
( M `  B
) )  =  B )  ->  B  e.  P )
9815adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( B
(midG `  G )
( M `  B
) )  =  B )  ->  ( M `  B )  e.  P
)
997adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( B
(midG `  G )
( M `  B
) )  =  B )  ->  GDimTarskiG 2 )
100 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( B
(midG `  G )
( M `  B
) )  =  B )  ->  ( B
(midG `  G )
( M `  B
) )  =  B )
1011, 2, 3, 96, 99, 97, 98, 100midcgr 25672 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( B
(midG `  G )
( M `  B
) )  =  B )  ->  ( B  .-  B )  =  ( B  .-  ( M `
 B ) ) )
102101eqcomd 2628 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( B
(midG `  G )
( M `  B
) )  =  B )  ->  ( B  .-  ( M `  B
) )  =  ( B  .-  B ) )
1031, 2, 3, 96, 97, 98, 97, 102axtgcgrid 25362 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( B
(midG `  G )
( M `  B
) )  =  B )  ->  B  =  ( M `  B ) )
104103ex 450 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( B (midG `  G ) ( M `
 B ) )  =  B  ->  B  =  ( M `  B ) ) )
105104necon3d 2815 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  =/=  ( M `  B )  ->  ( B (midG `  G ) ( M `
 B ) )  =/=  B ) )
106105imp 445 . . . . . . . . . . 11  |-  ( (
ph  /\  B  =/=  ( M `  B ) )  ->  ( B
(midG `  G )
( M `  B
) )  =/=  B
)
10773adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  B  =/=  ( M `  B ) )  ->  ( B
(midG `  G )
( M `  B
) )  e.  ( B I ( M `
 B ) ) )
1081, 3, 10, 84, 87, 93, 95, 94, 107btwnlng1 25514 . . . . . . . . . . 11  |-  ( (
ph  /\  B  =/=  ( M `  B ) )  ->  ( B
(midG `  G )
( M `  B
) )  e.  ( B L ( M `
 B ) ) )
1091, 3, 10, 84, 87, 93, 94, 95, 106, 108tglineelsb2 25527 . . . . . . . . . 10  |-  ( (
ph  /\  B  =/=  ( M `  B ) )  ->  ( B L ( M `  B ) )  =  ( B L ( B (midG `  G
) ( M `  B ) ) ) )
1101, 3, 10, 84, 95, 87, 106tglinecom 25530 . . . . . . . . . 10  |-  ( (
ph  /\  B  =/=  ( M `  B ) )  ->  ( ( B (midG `  G )
( M `  B
) ) L B )  =  ( B L ( B (midG `  G ) ( M `
 B ) ) ) )
111109, 110eqtr4d 2659 . . . . . . . . 9  |-  ( (
ph  /\  B  =/=  ( M `  B ) )  ->  ( B L ( M `  B ) )  =  ( ( B (midG `  G ) ( M `
 B ) ) L B ) )
11292, 111breqtrd 4679 . . . . . . . 8  |-  ( (
ph  /\  B  =/=  ( M `  B ) )  ->  D (⟂G `  G ) ( ( B (midG `  G
) ( M `  B ) ) L B ) )
1131, 2, 3, 10, 84, 85, 86, 87, 112perpdrag 25620 . . . . . . 7  |-  ( (
ph  /\  B  =/=  ( M `  B ) )  ->  <" Z
( B (midG `  G ) ( M `
 B ) ) B ">  e.  (∟G `  G ) )
11483, 113pm2.61dane 2881 . . . . . 6  |-  ( ph  ->  <" Z ( B (midG `  G
) ( M `  B ) ) B ">  e.  (∟G `  G ) )
1151, 2, 3, 10, 20, 4, 18, 16, 14israg 25592 . . . . . 6  |-  ( ph  ->  ( <" Z
( B (midG `  G ) ( M `
 B ) ) B ">  e.  (∟G `  G )  <->  ( Z  .-  B )  =  ( Z  .-  ( ( (pInvG `  G ) `  ( B (midG `  G ) ( M `
 B ) ) ) `  B ) ) ) )
116114, 115mpbid 222 . . . . 5  |-  ( ph  ->  ( Z  .-  B
)  =  ( Z 
.-  ( ( (pInvG `  G ) `  ( B (midG `  G )
( M `  B
) ) ) `  B ) ) )
117 eqidd 2623 . . . . . . 7  |-  ( ph  ->  ( B (midG `  G ) ( M `
 B ) )  =  ( B (midG `  G ) ( M `
 B ) ) )
1181, 2, 3, 4, 7, 14, 15, 20, 16ismidb 25670 . . . . . . 7  |-  ( ph  ->  ( ( M `  B )  =  ( ( (pInvG `  G
) `  ( B
(midG `  G )
( M `  B
) ) ) `  B )  <->  ( B
(midG `  G )
( M `  B
) )  =  ( B (midG `  G
) ( M `  B ) ) ) )
119117, 118mpbird 247 . . . . . 6  |-  ( ph  ->  ( M `  B
)  =  ( ( (pInvG `  G ) `  ( B (midG `  G ) ( M `
 B ) ) ) `  B ) )
120119oveq2d 6666 . . . . 5  |-  ( ph  ->  ( Z  .-  ( M `  B )
)  =  ( Z 
.-  ( ( (pInvG `  G ) `  ( B (midG `  G )
( M `  B
) ) ) `  B ) ) )
121116, 120eqtr4d 2659 . . . 4  |-  ( ph  ->  ( Z  .-  B
)  =  ( Z 
.-  ( M `  B ) ) )
122121adantr 481 . . 3  |-  ( (
ph  /\  ( S `  A )  =  Z )  ->  ( Z  .-  B )  =  ( Z  .-  ( M `
 B ) ) )
12328oveq1d 6665 . . 3  |-  ( (
ph  /\  ( S `  A )  =  Z )  ->  ( Z  .-  B )  =  ( A  .-  B ) )
12468, 122, 1233eqtr2d 2662 . 2  |-  ( (
ph  /\  ( S `  A )  =  Z )  ->  ( ( M `  A )  .-  ( M `  B
) )  =  ( A  .-  B ) )
1254adantr 481 . . . 4  |-  ( (
ph  /\  ( S `  A )  =/=  Z
)  ->  G  e. TarskiG )
12622adantr 481 . . . 4  |-  ( (
ph  /\  ( S `  A )  =/=  Z
)  ->  ( S `  A )  e.  P
)
12718adantr 481 . . . 4  |-  ( (
ph  /\  ( S `  A )  =/=  Z
)  ->  Z  e.  P )
1288adantr 481 . . . 4  |-  ( (
ph  /\  ( S `  A )  =/=  Z
)  ->  A  e.  P )
1291, 2, 3, 10, 20, 4, 18, 21, 12mircl 25556 . . . . 5  |-  ( ph  ->  ( S `  ( M `  A )
)  e.  P )
130129adantr 481 . . . 4  |-  ( (
ph  /\  ( S `  A )  =/=  Z
)  ->  ( S `  ( M `  A
) )  e.  P
)
13112adantr 481 . . . 4  |-  ( (
ph  /\  ( S `  A )  =/=  Z
)  ->  ( M `  A )  e.  P
)
13214adantr 481 . . . 4  |-  ( (
ph  /\  ( S `  A )  =/=  Z
)  ->  B  e.  P )
13315adantr 481 . . . 4  |-  ( (
ph  /\  ( S `  A )  =/=  Z
)  ->  ( M `  B )  e.  P
)
134 simpr 477 . . . 4  |-  ( (
ph  /\  ( S `  A )  =/=  Z
)  ->  ( S `  A )  =/=  Z
)
1351, 2, 3, 10, 20, 125, 127, 21, 128mirbtwn 25553 . . . 4  |-  ( (
ph  /\  ( S `  A )  =/=  Z
)  ->  Z  e.  ( ( S `  A ) I A ) )
1361, 2, 3, 10, 20, 125, 127, 21, 131mirbtwn 25553 . . . 4  |-  ( (
ph  /\  ( S `  A )  =/=  Z
)  ->  Z  e.  ( ( S `  ( M `  A ) ) I ( M `
 A ) ) )
137 eqidd 2623 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =  ( M `  A ) )  ->  Z  =  Z )
1384adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A  =  ( M `  A ) )  ->  G  e. TarskiG )
1398adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A  =  ( M `  A ) )  ->  A  e.  P )
14013adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A  =  ( M `  A ) )  ->  ( A
(midG `  G )
( M `  A
) )  e.  P
)
1411, 2, 3, 4, 7, 8, 12midbtwn 25671 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A (midG `  G ) ( M `
 A ) )  e.  ( A I ( M `  A
) ) )
142141adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  =  ( M `  A ) )  ->  ( A
(midG `  G )
( M `  A
) )  e.  ( A I ( M `
 A ) ) )
143 simpr 477 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  A  =  ( M `  A ) )  ->  A  =  ( M `  A ) )
144143oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  =  ( M `  A ) )  ->  ( A I A )  =  ( A I ( M `
 A ) ) )
145142, 144eleqtrrd 2704 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A  =  ( M `  A ) )  ->  ( A
(midG `  G )
( M `  A
) )  e.  ( A I A ) )
1461, 2, 3, 138, 139, 140, 145axtgbtwnid 25365 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =  ( M `  A ) )  ->  A  =  ( A (midG `  G
) ( M `  A ) ) )
147 eqidd 2623 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =  ( M `  A ) )  ->  A  =  A )
148137, 146, 147s3eqd 13609 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =  ( M `  A ) )  ->  <" Z A A ">  =  <" Z ( A (midG `  G )
( M `  A
) ) A "> )
1491, 2, 3, 10, 20, 4, 18, 8, 8ragtrivb 25597 . . . . . . . . . . . 12  |-  ( ph  ->  <" Z A A ">  e.  (∟G `  G ) )
150149adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =  ( M `  A ) )  ->  <" Z A A ">  e.  (∟G `  G ) )
151148, 150eqeltrrd 2702 . . . . . . . . . 10  |-  ( (
ph  /\  A  =  ( M `  A ) )  ->  <" Z
( A (midG `  G ) ( M `
 A ) ) A ">  e.  (∟G `  G ) )
1524adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =/=  ( M `  A ) )  ->  G  e. TarskiG )
15361adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =/=  ( M `  A ) )  ->  Z  e.  D )
15440adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =/=  ( M `  A ) )  ->  ( A
(midG `  G )
( M `  A
) )  e.  D
)
1558adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =/=  ( M `  A ) )  ->  A  e.  P )
156 df-ne 2795 . . . . . . . . . . . . 13  |-  ( A  =/=  ( M `  A )  <->  -.  A  =  ( M `  A ) )
15739simprd 479 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( D (⟂G `  G
) ( A L ( M `  A
) )  \/  A  =  ( M `  A ) ) )
158157orcomd 403 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  =  ( M `  A )  \/  D (⟂G `  G
) ( A L ( M `  A
) ) ) )
159158orcanai 952 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  A  =  ( M `  A ) )  ->  D (⟂G `  G )
( A L ( M `  A ) ) )
160156, 159sylan2b 492 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =/=  ( M `  A ) )  ->  D (⟂G `  G ) ( A L ( M `  A ) ) )
16112adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  =/=  ( M `  A ) )  ->  ( M `  A )  e.  P
)
162 simpr 477 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  =/=  ( M `  A ) )  ->  A  =/=  ( M `  A ) )
16313adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  =/=  ( M `  A ) )  ->  ( A
(midG `  G )
( M `  A
) )  e.  P
)
1644adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =  A )  ->  G  e. TarskiG )
1658adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =  A )  ->  A  e.  P )
16612adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =  A )  ->  ( M `  A )  e.  P
)
1677adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =  A )  ->  GDimTarskiG 2 )
168 simpr 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =  A )  ->  ( A
(midG `  G )
( M `  A
) )  =  A )
1691, 2, 3, 164, 167, 165, 166, 168midcgr 25672 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =  A )  ->  ( A  .-  A )  =  ( A  .-  ( M `
 A ) ) )
170169eqcomd 2628 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =  A )  ->  ( A  .-  ( M `  A
) )  =  ( A  .-  A ) )
1711, 2, 3, 164, 165, 166, 165, 170axtgcgrid 25362 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( A
(midG `  G )
( M `  A
) )  =  A )  ->  A  =  ( M `  A ) )
172171ex 450 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( A (midG `  G ) ( M `
 A ) )  =  A  ->  A  =  ( M `  A ) ) )
173172necon3d 2815 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  =/=  ( M `  A )  ->  ( A (midG `  G ) ( M `
 A ) )  =/=  A ) )
174173imp 445 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  =/=  ( M `  A ) )  ->  ( A
(midG `  G )
( M `  A
) )  =/=  A
)
175141adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  A  =/=  ( M `  A ) )  ->  ( A
(midG `  G )
( M `  A
) )  e.  ( A I ( M `
 A ) ) )
1761, 3, 10, 152, 155, 161, 163, 162, 175btwnlng1 25514 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  =/=  ( M `  A ) )  ->  ( A
(midG `  G )
( M `  A
) )  e.  ( A L ( M `
 A ) ) )
1771, 3, 10, 152, 155, 161, 162, 163, 174, 176tglineelsb2 25527 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A  =/=  ( M `  A ) )  ->  ( A L ( M `  A ) )  =  ( A L ( A (midG `  G
) ( M `  A ) ) ) )
1781, 3, 10, 152, 163, 155, 174tglinecom 25530 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A  =/=  ( M `  A ) )  ->  ( ( A (midG `  G )
( M `  A
) ) L A )  =  ( A L ( A (midG `  G ) ( M `
 A ) ) ) )
179177, 178eqtr4d 2659 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  =/=  ( M `  A ) )  ->  ( A L ( M `  A ) )  =  ( ( A (midG `  G ) ( M `
 A ) ) L A ) )
180160, 179breqtrd 4679 . . . . . . . . . . 11  |-  ( (
ph  /\  A  =/=  ( M `  A ) )  ->  D (⟂G `  G ) ( ( A (midG `  G
) ( M `  A ) ) L A ) )
1811, 2, 3, 10, 152, 153, 154, 155, 180perpdrag 25620 . . . . . . . . . 10  |-  ( (
ph  /\  A  =/=  ( M `  A ) )  ->  <" Z
( A (midG `  G ) ( M `
 A ) ) A ">  e.  (∟G `  G ) )
182151, 181pm2.61dane 2881 . . . . . . . . 9  |-  ( ph  ->  <" Z ( A (midG `  G
) ( M `  A ) ) A ">  e.  (∟G `  G ) )
1831, 2, 3, 10, 20, 4, 18, 13, 8israg 25592 . . . . . . . . 9  |-  ( ph  ->  ( <" Z
( A (midG `  G ) ( M `
 A ) ) A ">  e.  (∟G `  G )  <->  ( Z  .-  A )  =  ( Z  .-  ( ( (pInvG `  G ) `  ( A (midG `  G ) ( M `
 A ) ) ) `  A ) ) ) )
184182, 183mpbid 222 . . . . . . . 8  |-  ( ph  ->  ( Z  .-  A
)  =  ( Z 
.-  ( ( (pInvG `  G ) `  ( A (midG `  G )
( M `  A
) ) ) `  A ) ) )
185 eqidd 2623 . . . . . . . . . 10  |-  ( ph  ->  ( A (midG `  G ) ( M `
 A ) )  =  ( A (midG `  G ) ( M `
 A ) ) )
1861, 2, 3, 4, 7, 8, 12, 20, 13ismidb 25670 . . . . . . . . . 10  |-  ( ph  ->  ( ( M `  A )  =  ( ( (pInvG `  G
) `  ( A
(midG `  G )
( M `  A
) ) ) `  A )  <->  ( A
(midG `  G )
( M `  A
) )  =  ( A (midG `  G
) ( M `  A ) ) ) )
187185, 186mpbird 247 . . . . . . . . 9  |-  ( ph  ->  ( M `  A
)  =  ( ( (pInvG `  G ) `  ( A (midG `  G ) ( M `
 A ) ) ) `  A ) )
188187oveq2d 6666 . . . . . . . 8  |-  ( ph  ->  ( Z  .-  ( M `  A )
)  =  ( Z 
.-  ( ( (pInvG `  G ) `  ( A (midG `  G )
( M `  A
) ) ) `  A ) ) )
189184, 188eqtr4d 2659 . . . . . . 7  |-  ( ph  ->  ( Z  .-  A
)  =  ( Z 
.-  ( M `  A ) ) )
1901, 2, 3, 10, 20, 4, 18, 21, 8mircgr 25552 . . . . . . 7  |-  ( ph  ->  ( Z  .-  ( S `  A )
)  =  ( Z 
.-  A ) )
1911, 2, 3, 10, 20, 4, 18, 21, 12mircgr 25552 . . . . . . 7  |-  ( ph  ->  ( Z  .-  ( S `  ( M `  A ) ) )  =  ( Z  .-  ( M `  A ) ) )
192189, 190, 1913eqtr4d 2666 . . . . . 6  |-  ( ph  ->  ( Z  .-  ( S `  A )
)  =  ( Z 
.-  ( S `  ( M `  A ) ) ) )
193192adantr 481 . . . . 5  |-  ( (
ph  /\  ( S `  A )  =/=  Z
)  ->  ( Z  .-  ( S `  A
) )  =  ( Z  .-  ( S `
 ( M `  A ) ) ) )
1941, 2, 3, 125, 127, 126, 127, 130, 193tgcgrcomlr 25375 . . . 4  |-  ( (
ph  /\  ( S `  A )  =/=  Z
)  ->  ( ( S `  A )  .-  Z )  =  ( ( S `  ( M `  A )
)  .-  Z )
)
195189adantr 481 . . . 4  |-  ( (
ph  /\  ( S `  A )  =/=  Z
)  ->  ( Z  .-  A )  =  ( Z  .-  ( M `
 A ) ) )
19621fveq1i 6192 . . . . . . . . . 10  |-  ( S `
 ( A (midG `  G ) ( M `
 A ) ) )  =  ( ( (pInvG `  G ) `  Z ) `  ( A (midG `  G )
( M `  A
) ) )
1971, 2, 3, 4, 7, 8, 12, 21, 18mirmid 25675 . . . . . . . . . 10  |-  ( ph  ->  ( ( S `  A ) (midG `  G ) ( S `
 ( M `  A ) ) )  =  ( S `  ( A (midG `  G
) ( M `  A ) ) ) )
1986eqcomi 2631 . . . . . . . . . . 11  |-  ( ( A (midG `  G
) ( M `  A ) ) (midG `  G ) ( B (midG `  G )
( M `  B
) ) )  =  Z
1991, 2, 3, 4, 7, 13, 16, 20, 18ismidb 25670 . . . . . . . . . . 11  |-  ( ph  ->  ( ( B (midG `  G ) ( M `
 B ) )  =  ( ( (pInvG `  G ) `  Z
) `  ( A
(midG `  G )
( M `  A
) ) )  <->  ( ( A (midG `  G )
( M `  A
) ) (midG `  G ) ( B (midG `  G )
( M `  B
) ) )  =  Z ) )
200198, 199mpbiri 248 . . . . . . . . . 10  |-  ( ph  ->  ( B (midG `  G ) ( M `
 B ) )  =  ( ( (pInvG `  G ) `  Z
) `  ( A
(midG `  G )
( M `  A
) ) ) )
201196, 197, 2003eqtr4a 2682 . . . . . . . . 9  |-  ( ph  ->  ( ( S `  A ) (midG `  G ) ( S `
 ( M `  A ) ) )  =  ( B (midG `  G ) ( M `
 B ) ) )
2021, 2, 3, 4, 7, 22, 129, 20, 16ismidb 25670 . . . . . . . . 9  |-  ( ph  ->  ( ( S `  ( M `  A ) )  =  ( ( (pInvG `  G ) `  ( B (midG `  G ) ( M `
 B ) ) ) `  ( S `
 A ) )  <-> 
( ( S `  A ) (midG `  G ) ( S `
 ( M `  A ) ) )  =  ( B (midG `  G ) ( M `
 B ) ) ) )
203201, 202mpbird 247 . . . . . . . 8  |-  ( ph  ->  ( S `  ( M `  A )
)  =  ( ( (pInvG `  G ) `  ( B (midG `  G ) ( M `
 B ) ) ) `  ( S `
 A ) ) )
204119, 203oveq12d 6668 . . . . . . 7  |-  ( ph  ->  ( ( M `  B )  .-  ( S `  ( M `  A ) ) )  =  ( ( ( (pInvG `  G ) `  ( B (midG `  G ) ( M `
 B ) ) ) `  B ) 
.-  ( ( (pInvG `  G ) `  ( B (midG `  G )
( M `  B
) ) ) `  ( S `  A ) ) ) )
205 eqid 2622 . . . . . . . 8  |-  ( (pInvG `  G ) `  ( B (midG `  G )
( M `  B
) ) )  =  ( (pInvG `  G
) `  ( B
(midG `  G )
( M `  B
) ) )
2061, 2, 3, 10, 20, 4, 16, 205, 14, 22miriso 25565 . . . . . . 7  |-  ( ph  ->  ( ( ( (pInvG `  G ) `  ( B (midG `  G )
( M `  B
) ) ) `  B )  .-  (
( (pInvG `  G
) `  ( B
(midG `  G )
( M `  B
) ) ) `  ( S `  A ) ) )  =  ( B  .-  ( S `
 A ) ) )
207204, 206eqtr2d 2657 . . . . . 6  |-  ( ph  ->  ( B  .-  ( S `  A )
)  =  ( ( M `  B ) 
.-  ( S `  ( M `  A ) ) ) )
208207adantr 481 . . . . 5  |-  ( (
ph  /\  ( S `  A )  =/=  Z
)  ->  ( B  .-  ( S `  A
) )  =  ( ( M `  B
)  .-  ( S `  ( M `  A
) ) ) )
2091, 2, 3, 125, 132, 126, 133, 130, 208tgcgrcomlr 25375 . . . 4  |-  ( (
ph  /\  ( S `  A )  =/=  Z
)  ->  ( ( S `  A )  .-  B )  =  ( ( S `  ( M `  A )
)  .-  ( M `  B ) ) )
210121adantr 481 . . . 4  |-  ( (
ph  /\  ( S `  A )  =/=  Z
)  ->  ( Z  .-  B )  =  ( Z  .-  ( M `
 B ) ) )
2111, 2, 3, 125, 126, 127, 128, 130, 127, 131, 132, 133, 134, 135, 136, 194, 195, 209, 210axtg5seg 25364 . . 3  |-  ( (
ph  /\  ( S `  A )  =/=  Z
)  ->  ( A  .-  B )  =  ( ( M `  A
)  .-  ( M `  B ) ) )
212211eqcomd 2628 . 2  |-  ( (
ph  /\  ( S `  A )  =/=  Z
)  ->  ( ( M `  A )  .-  ( M `  B
) )  =  ( A  .-  B ) )
213124, 212pm2.61dane 2881 1  |-  ( ph  ->  ( ( M `  A )  .-  ( M `  B )
)  =  ( A 
.-  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ran crn 5115   ` cfv 5888  (class class class)co 6650   2c2 11070   <"cs3 13587   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  DimTarskiGcstrkgld 25333  Itvcitv 25335  LineGclng 25336  pInvGcmir 25547  ∟Gcrag 25588  ⟂Gcperpg 25590  midGcmid 25664  lInvGclmi 25665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkgld 25351  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-mir 25548  df-rag 25589  df-perpg 25591  df-mid 25666  df-lmi 25667
This theorem is referenced by:  lmiiso  25689
  Copyright terms: Public domain W3C validator