| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trlval3 | Structured version Visualization version Unicode version | ||
| Description: The value of the trace of a lattice translation in terms of 2 atoms. TODO: Try to shorten proof. (Contributed by NM, 3-May-2013.) |
| Ref | Expression |
|---|---|
| trlval3.l |
|
| trlval3.j |
|
| trlval3.m |
|
| trlval3.a |
|
| trlval3.h |
|
| trlval3.t |
|
| trlval3.r |
|
| Ref | Expression |
|---|---|
| trlval3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1064 |
. . . 4
| |
| 2 | simpl31 1142 |
. . . 4
| |
| 3 | simpl2 1065 |
. . . 4
| |
| 4 | simpr 477 |
. . . 4
| |
| 5 | trlval3.l |
. . . . 5
| |
| 6 | eqid 2622 |
. . . . 5
| |
| 7 | trlval3.a |
. . . . 5
| |
| 8 | trlval3.h |
. . . . 5
| |
| 9 | trlval3.t |
. . . . 5
| |
| 10 | trlval3.r |
. . . . 5
| |
| 11 | 5, 6, 7, 8, 9, 10 | trl0 35457 |
. . . 4
|
| 12 | 1, 2, 3, 4, 11 | syl112anc 1330 |
. . 3
|
| 13 | simpl33 1144 |
. . . 4
| |
| 14 | simpl1l 1112 |
. . . . . 6
| |
| 15 | hlatl 34647 |
. . . . . 6
| |
| 16 | 14, 15 | syl 17 |
. . . . 5
|
| 17 | 4 | oveq2d 6666 |
. . . . . . 7
|
| 18 | simp31l 1184 |
. . . . . . . . 9
| |
| 19 | 18 | adantr 481 |
. . . . . . . 8
|
| 20 | trlval3.j |
. . . . . . . . 9
| |
| 21 | 20, 7 | hlatjidm 34655 |
. . . . . . . 8
|
| 22 | 14, 19, 21 | syl2anc 693 |
. . . . . . 7
|
| 23 | 17, 22 | eqtrd 2656 |
. . . . . 6
|
| 24 | 23, 19 | eqeltrd 2701 |
. . . . 5
|
| 25 | simp1 1061 |
. . . . . . . . . 10
| |
| 26 | simp2 1062 |
. . . . . . . . . 10
| |
| 27 | simp31 1097 |
. . . . . . . . . 10
| |
| 28 | simp32 1098 |
. . . . . . . . . 10
| |
| 29 | 5, 7, 8, 9 | ltrn2ateq 35467 |
. . . . . . . . . 10
|
| 30 | 25, 26, 27, 28, 29 | syl13anc 1328 |
. . . . . . . . 9
|
| 31 | 30 | biimpa 501 |
. . . . . . . 8
|
| 32 | 31 | oveq2d 6666 |
. . . . . . 7
|
| 33 | simp32l 1186 |
. . . . . . . . 9
| |
| 34 | 33 | adantr 481 |
. . . . . . . 8
|
| 35 | 20, 7 | hlatjidm 34655 |
. . . . . . . 8
|
| 36 | 14, 34, 35 | syl2anc 693 |
. . . . . . 7
|
| 37 | 32, 36 | eqtrd 2656 |
. . . . . 6
|
| 38 | 37, 34 | eqeltrd 2701 |
. . . . 5
|
| 39 | trlval3.m |
. . . . . 6
| |
| 40 | 39, 6, 7 | atnem0 34605 |
. . . . 5
|
| 41 | 16, 24, 38, 40 | syl3anc 1326 |
. . . 4
|
| 42 | 13, 41 | mpbid 222 |
. . 3
|
| 43 | 12, 42 | eqtr4d 2659 |
. 2
|
| 44 | simpl1 1064 |
. . . . . 6
| |
| 45 | simpl2 1065 |
. . . . . 6
| |
| 46 | simpl31 1142 |
. . . . . 6
| |
| 47 | 5, 20, 39, 7, 8, 9, 10 | trlval2 35450 |
. . . . . 6
|
| 48 | 44, 45, 46, 47 | syl3anc 1326 |
. . . . 5
|
| 49 | simpl1l 1112 |
. . . . . . 7
| |
| 50 | hllat 34650 |
. . . . . . 7
| |
| 51 | 49, 50 | syl 17 |
. . . . . 6
|
| 52 | 18 | adantr 481 |
. . . . . . 7
|
| 53 | 5, 7, 8, 9 | ltrnat 35426 |
. . . . . . . 8
|
| 54 | 44, 45, 52, 53 | syl3anc 1326 |
. . . . . . 7
|
| 55 | eqid 2622 |
. . . . . . . 8
| |
| 56 | 55, 20, 7 | hlatjcl 34653 |
. . . . . . 7
|
| 57 | 49, 52, 54, 56 | syl3anc 1326 |
. . . . . 6
|
| 58 | simpl1r 1113 |
. . . . . . 7
| |
| 59 | 55, 8 | lhpbase 35284 |
. . . . . . 7
|
| 60 | 58, 59 | syl 17 |
. . . . . 6
|
| 61 | 55, 5, 39 | latmle1 17076 |
. . . . . 6
|
| 62 | 51, 57, 60, 61 | syl3anc 1326 |
. . . . 5
|
| 63 | 48, 62 | eqbrtrd 4675 |
. . . 4
|
| 64 | simpl32 1143 |
. . . . . 6
| |
| 65 | 5, 20, 39, 7, 8, 9, 10 | trlval2 35450 |
. . . . . 6
|
| 66 | 44, 45, 64, 65 | syl3anc 1326 |
. . . . 5
|
| 67 | 33 | adantr 481 |
. . . . . . 7
|
| 68 | 5, 7, 8, 9 | ltrnat 35426 |
. . . . . . . 8
|
| 69 | 44, 45, 67, 68 | syl3anc 1326 |
. . . . . . 7
|
| 70 | 55, 20, 7 | hlatjcl 34653 |
. . . . . . 7
|
| 71 | 49, 67, 69, 70 | syl3anc 1326 |
. . . . . 6
|
| 72 | 55, 5, 39 | latmle1 17076 |
. . . . . 6
|
| 73 | 51, 71, 60, 72 | syl3anc 1326 |
. . . . 5
|
| 74 | 66, 73 | eqbrtrd 4675 |
. . . 4
|
| 75 | 55, 8, 9, 10 | trlcl 35451 |
. . . . . 6
|
| 76 | 44, 45, 75 | syl2anc 693 |
. . . . 5
|
| 77 | 55, 5, 39 | latlem12 17078 |
. . . . 5
|
| 78 | 51, 76, 57, 71, 77 | syl13anc 1328 |
. . . 4
|
| 79 | 63, 74, 78 | mpbi2and 956 |
. . 3
|
| 80 | 49, 15 | syl 17 |
. . . 4
|
| 81 | simpr 477 |
. . . . 5
| |
| 82 | 5, 7, 8, 9, 10 | trlat 35456 |
. . . . 5
|
| 83 | 44, 46, 45, 81, 82 | syl112anc 1330 |
. . . 4
|
| 84 | 55, 39 | latmcl 17052 |
. . . . . . . 8
|
| 85 | 51, 57, 71, 84 | syl3anc 1326 |
. . . . . . 7
|
| 86 | 55, 5, 6, 7 | atlen0 34597 |
. . . . . . 7
|
| 87 | 80, 85, 83, 79, 86 | syl31anc 1329 |
. . . . . 6
|
| 88 | 87 | neneqd 2799 |
. . . . 5
|
| 89 | simpl33 1144 |
. . . . . . 7
| |
| 90 | 20, 39, 6, 7 | 2atmat0 34812 |
. . . . . . 7
|
| 91 | 49, 52, 54, 67, 69, 89, 90 | syl33anc 1341 |
. . . . . 6
|
| 92 | 91 | ord 392 |
. . . . 5
|
| 93 | 88, 92 | mt3d 140 |
. . . 4
|
| 94 | 5, 7 | atcmp 34598 |
. . . 4
|
| 95 | 80, 83, 93, 94 | syl3anc 1326 |
. . 3
|
| 96 | 79, 95 | mpbid 222 |
. 2
|
| 97 | 43, 96 | pm2.61dane 2881 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 |
| This theorem is referenced by: trlval4 35475 |
| Copyright terms: Public domain | W3C validator |