| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tskord | Structured version Visualization version Unicode version | ||
| Description: A Tarski class contains all ordinals smaller than it. (Contributed by Mario Carneiro, 8-Jun-2013.) |
| Ref | Expression |
|---|---|
| tskord |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 4656 |
. . . . . 6
| |
| 2 | 1 | anbi2d 740 |
. . . . 5
|
| 3 | eleq1 2689 |
. . . . 5
| |
| 4 | 2, 3 | imbi12d 334 |
. . . 4
|
| 5 | breq1 4656 |
. . . . . 6
| |
| 6 | 5 | anbi2d 740 |
. . . . 5
|
| 7 | eleq1 2689 |
. . . . 5
| |
| 8 | 6, 7 | imbi12d 334 |
. . . 4
|
| 9 | simplrl 800 |
. . . . . . . . 9
| |
| 10 | onelss 5766 |
. . . . . . . . . . . . 13
| |
| 11 | ssdomg 8001 |
. . . . . . . . . . . . 13
| |
| 12 | 10, 11 | syld 47 |
. . . . . . . . . . . 12
|
| 13 | 12 | imp 445 |
. . . . . . . . . . 11
|
| 14 | 13 | adantlr 751 |
. . . . . . . . . 10
|
| 15 | simplrr 801 |
. . . . . . . . . 10
| |
| 16 | domsdomtr 8095 |
. . . . . . . . . 10
| |
| 17 | 14, 15, 16 | syl2anc 693 |
. . . . . . . . 9
|
| 18 | pm2.27 42 |
. . . . . . . . 9
| |
| 19 | 9, 17, 18 | syl2anc 693 |
. . . . . . . 8
|
| 20 | 19 | ralimdva 2962 |
. . . . . . 7
|
| 21 | dfss3 3592 |
. . . . . . . . . . 11
| |
| 22 | tskssel 9579 |
. . . . . . . . . . . 12
| |
| 23 | 22 | 3exp 1264 |
. . . . . . . . . . 11
|
| 24 | 21, 23 | syl5bir 233 |
. . . . . . . . . 10
|
| 25 | 24 | com23 86 |
. . . . . . . . 9
|
| 26 | 25 | imp 445 |
. . . . . . . 8
|
| 27 | 26 | adantl 482 |
. . . . . . 7
|
| 28 | 20, 27 | syld 47 |
. . . . . 6
|
| 29 | 28 | ex 450 |
. . . . 5
|
| 30 | 29 | com23 86 |
. . . 4
|
| 31 | 4, 8, 30 | tfis3 7057 |
. . 3
|
| 32 | 31 | 3impib 1262 |
. 2
|
| 33 | 32 | 3com12 1269 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-tsk 9571 |
| This theorem is referenced by: tskcard 9603 |
| Copyright terms: Public domain | W3C validator |