MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskord Structured version   Visualization version   Unicode version

Theorem tskord 9602
Description: A Tarski class contains all ordinals smaller than it. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
tskord  |-  ( ( T  e.  Tarski  /\  A  e.  On  /\  A  ~<  T )  ->  A  e.  T )

Proof of Theorem tskord
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4656 . . . . . 6  |-  ( x  =  y  ->  (
x  ~<  T  <->  y  ~<  T ) )
21anbi2d 740 . . . . 5  |-  ( x  =  y  ->  (
( T  e.  Tarski  /\  x  ~<  T )  <->  ( T  e.  Tarski  /\  y  ~<  T ) ) )
3 eleq1 2689 . . . . 5  |-  ( x  =  y  ->  (
x  e.  T  <->  y  e.  T ) )
42, 3imbi12d 334 . . . 4  |-  ( x  =  y  ->  (
( ( T  e. 
Tarski  /\  x  ~<  T )  ->  x  e.  T
)  <->  ( ( T  e.  Tarski  /\  y  ~<  T )  ->  y  e.  T ) ) )
5 breq1 4656 . . . . . 6  |-  ( x  =  A  ->  (
x  ~<  T  <->  A  ~<  T ) )
65anbi2d 740 . . . . 5  |-  ( x  =  A  ->  (
( T  e.  Tarski  /\  x  ~<  T )  <->  ( T  e.  Tarski  /\  A  ~<  T ) ) )
7 eleq1 2689 . . . . 5  |-  ( x  =  A  ->  (
x  e.  T  <->  A  e.  T ) )
86, 7imbi12d 334 . . . 4  |-  ( x  =  A  ->  (
( ( T  e. 
Tarski  /\  x  ~<  T )  ->  x  e.  T
)  <->  ( ( T  e.  Tarski  /\  A  ~<  T )  ->  A  e.  T ) ) )
9 simplrl 800 . . . . . . . . 9  |-  ( ( ( x  e.  On  /\  ( T  e.  Tarski  /\  x  ~<  T )
)  /\  y  e.  x )  ->  T  e.  Tarski )
10 onelss 5766 . . . . . . . . . . . . 13  |-  ( x  e.  On  ->  (
y  e.  x  -> 
y  C_  x )
)
11 ssdomg 8001 . . . . . . . . . . . . 13  |-  ( x  e.  On  ->  (
y  C_  x  ->  y  ~<_  x ) )
1210, 11syld 47 . . . . . . . . . . . 12  |-  ( x  e.  On  ->  (
y  e.  x  -> 
y  ~<_  x ) )
1312imp 445 . . . . . . . . . . 11  |-  ( ( x  e.  On  /\  y  e.  x )  ->  y  ~<_  x )
1413adantlr 751 . . . . . . . . . 10  |-  ( ( ( x  e.  On  /\  ( T  e.  Tarski  /\  x  ~<  T )
)  /\  y  e.  x )  ->  y  ~<_  x )
15 simplrr 801 . . . . . . . . . 10  |-  ( ( ( x  e.  On  /\  ( T  e.  Tarski  /\  x  ~<  T )
)  /\  y  e.  x )  ->  x  ~<  T )
16 domsdomtr 8095 . . . . . . . . . 10  |-  ( ( y  ~<_  x  /\  x  ~<  T )  ->  y  ~<  T )
1714, 15, 16syl2anc 693 . . . . . . . . 9  |-  ( ( ( x  e.  On  /\  ( T  e.  Tarski  /\  x  ~<  T )
)  /\  y  e.  x )  ->  y  ~<  T )
18 pm2.27 42 . . . . . . . . 9  |-  ( ( T  e.  Tarski  /\  y  ~<  T )  ->  (
( ( T  e. 
Tarski  /\  y  ~<  T )  ->  y  e.  T
)  ->  y  e.  T ) )
199, 17, 18syl2anc 693 . . . . . . . 8  |-  ( ( ( x  e.  On  /\  ( T  e.  Tarski  /\  x  ~<  T )
)  /\  y  e.  x )  ->  (
( ( T  e. 
Tarski  /\  y  ~<  T )  ->  y  e.  T
)  ->  y  e.  T ) )
2019ralimdva 2962 . . . . . . 7  |-  ( ( x  e.  On  /\  ( T  e.  Tarski  /\  x  ~<  T ) )  -> 
( A. y  e.  x  ( ( T  e.  Tarski  /\  y  ~<  T )  ->  y  e.  T )  ->  A. y  e.  x  y  e.  T ) )
21 dfss3 3592 . . . . . . . . . . 11  |-  ( x 
C_  T  <->  A. y  e.  x  y  e.  T )
22 tskssel 9579 . . . . . . . . . . . 12  |-  ( ( T  e.  Tarski  /\  x  C_  T  /\  x  ~<  T )  ->  x  e.  T )
23223exp 1264 . . . . . . . . . . 11  |-  ( T  e.  Tarski  ->  ( x  C_  T  ->  ( x  ~<  T  ->  x  e.  T
) ) )
2421, 23syl5bir 233 . . . . . . . . . 10  |-  ( T  e.  Tarski  ->  ( A. y  e.  x  y  e.  T  ->  ( x  ~<  T  ->  x  e.  T
) ) )
2524com23 86 . . . . . . . . 9  |-  ( T  e.  Tarski  ->  ( x  ~<  T  ->  ( A. y  e.  x  y  e.  T  ->  x  e.  T
) ) )
2625imp 445 . . . . . . . 8  |-  ( ( T  e.  Tarski  /\  x  ~<  T )  ->  ( A. y  e.  x  y  e.  T  ->  x  e.  T ) )
2726adantl 482 . . . . . . 7  |-  ( ( x  e.  On  /\  ( T  e.  Tarski  /\  x  ~<  T ) )  -> 
( A. y  e.  x  y  e.  T  ->  x  e.  T ) )
2820, 27syld 47 . . . . . 6  |-  ( ( x  e.  On  /\  ( T  e.  Tarski  /\  x  ~<  T ) )  -> 
( A. y  e.  x  ( ( T  e.  Tarski  /\  y  ~<  T )  ->  y  e.  T )  ->  x  e.  T ) )
2928ex 450 . . . . 5  |-  ( x  e.  On  ->  (
( T  e.  Tarski  /\  x  ~<  T )  ->  ( A. y  e.  x  ( ( T  e.  Tarski  /\  y  ~<  T )  ->  y  e.  T )  ->  x  e.  T ) ) )
3029com23 86 . . . 4  |-  ( x  e.  On  ->  ( A. y  e.  x  ( ( T  e. 
Tarski  /\  y  ~<  T )  ->  y  e.  T
)  ->  ( ( T  e.  Tarski  /\  x  ~<  T )  ->  x  e.  T ) ) )
314, 8, 30tfis3 7057 . . 3  |-  ( A  e.  On  ->  (
( T  e.  Tarski  /\  A  ~<  T )  ->  A  e.  T ) )
32313impib 1262 . 2  |-  ( ( A  e.  On  /\  T  e.  Tarski  /\  A  ~<  T )  ->  A  e.  T )
33323com12 1269 1  |-  ( ( T  e.  Tarski  /\  A  e.  On  /\  A  ~<  T )  ->  A  e.  T )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   class class class wbr 4653   Oncon0 5723    ~<_ cdom 7953    ~< csdm 7954   Tarskictsk 9570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-tsk 9571
This theorem is referenced by:  tskcard  9603
  Copyright terms: Public domain W3C validator