MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumpropd Structured version   Visualization version   Unicode version

Theorem gsumpropd 17272
Description: The group sum depends only on the base set and additive operation. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd 17316 etc. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
gsumpropd.f  |-  ( ph  ->  F  e.  V )
gsumpropd.g  |-  ( ph  ->  G  e.  W )
gsumpropd.h  |-  ( ph  ->  H  e.  X )
gsumpropd.b  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
gsumpropd.p  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
Assertion
Ref Expression
gsumpropd  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )

Proof of Theorem gsumpropd
Dummy variables  a 
b  f  m  n  s  t  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumpropd.b . . . . 5  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
2 gsumpropd.p . . . . . . . . 9  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
32oveqd 6667 . . . . . . . 8  |-  ( ph  ->  ( s ( +g  `  G ) t )  =  ( s ( +g  `  H ) t ) )
43eqeq1d 2624 . . . . . . 7  |-  ( ph  ->  ( ( s ( +g  `  G ) t )  =  t  <-> 
( s ( +g  `  H ) t )  =  t ) )
52oveqd 6667 . . . . . . . 8  |-  ( ph  ->  ( t ( +g  `  G ) s )  =  ( t ( +g  `  H ) s ) )
65eqeq1d 2624 . . . . . . 7  |-  ( ph  ->  ( ( t ( +g  `  G ) s )  =  t  <-> 
( t ( +g  `  H ) s )  =  t ) )
74, 6anbi12d 747 . . . . . 6  |-  ( ph  ->  ( ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t )  <->  ( (
s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) ) )
81, 7raleqbidv 3152 . . . . 5  |-  ( ph  ->  ( A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t )  <->  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) ) )
91, 8rabeqbidv 3195 . . . 4  |-  ( ph  ->  { s  e.  (
Base `  G )  |  A. t  e.  (
Base `  G )
( ( s ( +g  `  G ) t )  =  t  /\  ( t ( +g  `  G ) s )  =  t ) }  =  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } )
109sseq2d 3633 . . 3  |-  ( ph  ->  ( ran  F  C_  { s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) }  <->  ran  F  C_  { s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) )
11 eqidd 2623 . . . 4  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  G ) )
122oveqdr 6674 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  G
)  /\  b  e.  ( Base `  G )
) )  ->  (
a ( +g  `  G
) b )  =  ( a ( +g  `  H ) b ) )
1311, 1, 12grpidpropd 17261 . . 3  |-  ( ph  ->  ( 0g `  G
)  =  ( 0g
`  H ) )
142seqeq2d 12808 . . . . . . . . . 10  |-  ( ph  ->  seq m ( ( +g  `  G ) ,  F )  =  seq m ( ( +g  `  H ) ,  F ) )
1514fveq1d 6193 . . . . . . . . 9  |-  ( ph  ->  (  seq m ( ( +g  `  G
) ,  F ) `
 n )  =  (  seq m ( ( +g  `  H
) ,  F ) `
 n ) )
1615eqeq2d 2632 . . . . . . . 8  |-  ( ph  ->  ( x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n )  <->  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) )
1716anbi2d 740 . . . . . . 7  |-  ( ph  ->  ( ( dom  F  =  ( m ... n )  /\  x  =  (  seq m
( ( +g  `  G
) ,  F ) `
 n ) )  <-> 
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
1817rexbidv 3052 . . . . . 6  |-  ( ph  ->  ( E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) )  <->  E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
1918exbidv 1850 . . . . 5  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( dom 
F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F
) `  n )
)  <->  E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
2019iotabidv 5872 . . . 4  |-  ( ph  ->  ( iota x E. m E. n  e.  (
ZZ>= `  m ) ( dom  F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) ) )  =  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
219difeq2d 3728 . . . . . . . . . . . 12  |-  ( ph  ->  ( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } )  =  ( _V  \  { s  e.  (
Base `  H )  |  A. t  e.  (
Base `  H )
( ( s ( +g  `  H ) t )  =  t  /\  ( t ( +g  `  H ) s )  =  t ) } ) )
2221imaeq2d 5466 . . . . . . . . . . 11  |-  ( ph  ->  ( `' F "
( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  =  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) )
2322fveq2d 6195 . . . . . . . . . 10  |-  ( ph  ->  ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) )  =  (
# `  ( `' F " ( _V  \  { s  e.  (
Base `  H )  |  A. t  e.  (
Base `  H )
( ( s ( +g  `  H ) t )  =  t  /\  ( t ( +g  `  H ) s )  =  t ) } ) ) ) )
2423oveq2d 6666 . . . . . . . . 9  |-  ( ph  ->  ( 1 ... ( # `
 ( `' F " ( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) )  =  ( 1 ... ( # `
 ( `' F " ( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) )
25 f1oeq2 6128 . . . . . . . . 9  |-  ( ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) )  =  ( 1 ... ( # `
 ( `' F " ( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) )  -> 
( f : ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  <->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) )
2624, 25syl 17 . . . . . . . 8  |-  ( ph  ->  ( f : ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  <->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) )
27 f1oeq3 6129 . . . . . . . . 9  |-  ( ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  =  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) )  ->  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  <->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) )
2822, 27syl 17 . . . . . . . 8  |-  ( ph  ->  ( f : ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  <->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) )
2926, 28bitrd 268 . . . . . . 7  |-  ( ph  ->  ( f : ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  <->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) )
302seqeq2d 12808 . . . . . . . . 9  |-  ( ph  ->  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) )  =  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) )
3130, 23fveq12d 6197 . . . . . . . 8  |-  ( ph  ->  (  seq 1 ( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) )  =  (  seq 1 ( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) )
3231eqeq2d 2632 . . . . . . 7  |-  ( ph  ->  ( x  =  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) )  <->  x  =  (  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) `  ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) ) )
3329, 32anbi12d 747 . . . . . 6  |-  ( ph  ->  ( ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  /\  x  =  (  seq 1 ( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) )  <-> 
( f : ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) )  /\  x  =  (  seq 1 ( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) ) ) )
3433exbidv 1850 . . . . 5  |-  ( ph  ->  ( E. f ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  /\  x  =  (  seq 1 ( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) )  <->  E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) )  /\  x  =  (  seq 1 ( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) ) ) )
3534iotabidv 5872 . . . 4  |-  ( ph  ->  ( iota x E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  /\  x  =  (  seq 1 ( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) ) )  =  ( iota
x E. f ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) )  /\  x  =  (  seq 1 ( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) ) ) )
3620, 35ifeq12d 4106 . . 3  |-  ( ph  ->  if ( dom  F  e.  ran  ... ,  ( iota
x E. m E. n  e.  ( ZZ>= `  m ) ( dom 
F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F
) `  n )
) ) ,  ( iota x E. f
( f : ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  /\  x  =  (  seq 1 ( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) ) ) )  =  if ( dom  F  e. 
ran  ... ,  ( iota
x E. m E. n  e.  ( ZZ>= `  m ) ( dom 
F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  H ) ,  F
) `  n )
) ) ,  ( iota x E. f
( f : ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) )  /\  x  =  (  seq 1 ( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) ) ) ) )
3710, 13, 36ifbieq12d 4113 . 2  |-  ( ph  ->  if ( ran  F  C_ 
{ s  e.  (
Base `  G )  |  A. t  e.  (
Base `  G )
( ( s ( +g  `  G ) t )  =  t  /\  ( t ( +g  `  G ) s )  =  t ) } ,  ( 0g `  G ) ,  if ( dom 
F  e.  ran  ... ,  ( iota x E. m E. n  e.  (
ZZ>= `  m ) ( dom  F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  /\  x  =  (  seq 1 ( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) ) ) ) )  =  if ( ran  F  C_ 
{ s  e.  (
Base `  H )  |  A. t  e.  (
Base `  H )
( ( s ( +g  `  H ) t )  =  t  /\  ( t ( +g  `  H ) s )  =  t ) } ,  ( 0g `  H ) ,  if ( dom 
F  e.  ran  ... ,  ( iota x E. m E. n  e.  (
ZZ>= `  m ) ( dom  F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) )  /\  x  =  (  seq 1 ( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) ) ) ) ) )
38 eqid 2622 . . 3  |-  ( Base `  G )  =  (
Base `  G )
39 eqid 2622 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
40 eqid 2622 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
41 eqid 2622 . . 3  |-  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) }  =  { s  e.  (
Base `  G )  |  A. t  e.  (
Base `  G )
( ( s ( +g  `  G ) t )  =  t  /\  ( t ( +g  `  G ) s )  =  t ) }
42 eqidd 2623 . . 3  |-  ( ph  ->  ( `' F "
( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  =  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) )
43 gsumpropd.g . . 3  |-  ( ph  ->  G  e.  W )
44 gsumpropd.f . . 3  |-  ( ph  ->  F  e.  V )
45 eqidd 2623 . . 3  |-  ( ph  ->  dom  F  =  dom  F )
4638, 39, 40, 41, 42, 43, 44, 45gsumvalx 17270 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  if ( ran  F  C_  { s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } , 
( 0g `  G
) ,  if ( dom  F  e.  ran  ...
,  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  /\  x  =  (  seq 1 ( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) ) ) ) ) )
47 eqid 2622 . . 3  |-  ( Base `  H )  =  (
Base `  H )
48 eqid 2622 . . 3  |-  ( 0g
`  H )  =  ( 0g `  H
)
49 eqid 2622 . . 3  |-  ( +g  `  H )  =  ( +g  `  H )
50 eqid 2622 . . 3  |-  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) }  =  { s  e.  (
Base `  H )  |  A. t  e.  (
Base `  H )
( ( s ( +g  `  H ) t )  =  t  /\  ( t ( +g  `  H ) s )  =  t ) }
51 eqidd 2623 . . 3  |-  ( ph  ->  ( `' F "
( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) )  =  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) )
52 gsumpropd.h . . 3  |-  ( ph  ->  H  e.  X )
5347, 48, 49, 50, 51, 52, 44, 45gsumvalx 17270 . 2  |-  ( ph  ->  ( H  gsumg  F )  =  if ( ran  F  C_  { s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } , 
( 0g `  H
) ,  if ( dom  F  e.  ran  ...
,  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) )  /\  x  =  (  seq 1 ( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) ) ) ) ) )
5437, 46, 533eqtr4d 2666 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ifcif 4086   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117    o. ccom 5118   iotacio 5849   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   1c1 9937   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801   #chash 13117   Basecbs 15857   +g cplusg 15941   0gc0g 16100    gsumg cgsu 16101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seq 12802  df-0g 16102  df-gsum 16103
This theorem is referenced by:  psropprmul  19608  ply1coe  19666  frlmgsum  20111  matgsum  20243  tsmspropd  21935
  Copyright terms: Public domain W3C validator