MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilcmp Structured version   Visualization version   Unicode version

Theorem ufilcmp 21836
Description: A space is compact iff every ultrafilter converges. (Contributed by Jeff Hankins, 11-Dec-2009.) (Proof shortened by Mario Carneiro, 12-Apr-2015.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ufilcmp  |-  ( ( X  e. UFL  /\  J  e.  (TopOn `  X )
)  ->  ( J  e.  Comp  <->  A. f  e.  (
UFil `  X )
( J  fLim  f
)  =/=  (/) ) )
Distinct variable groups:    f, J    f, X

Proof of Theorem ufilcmp
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 ufilfil 21708 . . . . . 6  |-  ( f  e.  ( UFil `  U. J )  ->  f  e.  ( Fil `  U. J ) )
2 eqid 2622 . . . . . . 7  |-  U. J  =  U. J
32fclscmpi 21833 . . . . . 6  |-  ( ( J  e.  Comp  /\  f  e.  ( Fil `  U. J ) )  -> 
( J  fClus  f )  =/=  (/) )
41, 3sylan2 491 . . . . 5  |-  ( ( J  e.  Comp  /\  f  e.  ( UFil `  U. J ) )  -> 
( J  fClus  f )  =/=  (/) )
54ralrimiva 2966 . . . 4  |-  ( J  e.  Comp  ->  A. f  e.  ( UFil `  U. J ) ( J 
fClus  f )  =/=  (/) )
6 toponuni 20719 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
76fveq2d 6195 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  ( UFil `  X )  =  (
UFil `  U. J ) )
87raleqdv 3144 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  ( A. f  e.  ( UFil `  X ) ( J 
fClus  f )  =/=  (/)  <->  A. f  e.  ( UFil `  U. J ) ( J 
fClus  f )  =/=  (/) ) )
98adantl 482 . . . 4  |-  ( ( X  e. UFL  /\  J  e.  (TopOn `  X )
)  ->  ( A. f  e.  ( UFil `  X ) ( J 
fClus  f )  =/=  (/)  <->  A. f  e.  ( UFil `  U. J ) ( J 
fClus  f )  =/=  (/) ) )
105, 9syl5ibr 236 . . 3  |-  ( ( X  e. UFL  /\  J  e.  (TopOn `  X )
)  ->  ( J  e.  Comp  ->  A. f  e.  ( UFil `  X
) ( J  fClus  f )  =/=  (/) ) )
11 ufli 21718 . . . . . . 7  |-  ( ( X  e. UFL  /\  g  e.  ( Fil `  X
) )  ->  E. f  e.  ( UFil `  X
) g  C_  f
)
1211adantlr 751 . . . . . 6  |-  ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X
) )  /\  g  e.  ( Fil `  X
) )  ->  E. f  e.  ( UFil `  X
) g  C_  f
)
13 r19.29 3072 . . . . . . 7  |-  ( ( A. f  e.  (
UFil `  X )
( J  fClus  f )  =/=  (/)  /\  E. f  e.  ( UFil `  X
) g  C_  f
)  ->  E. f  e.  ( UFil `  X
) ( ( J 
fClus  f )  =/=  (/)  /\  g  C_  f ) )
14 simpllr 799 . . . . . . . . . . . . 13  |-  ( ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X ) )  /\  g  e.  ( Fil `  X ) )  /\  ( f  e.  (
UFil `  X )  /\  g  C_  f ) )  ->  J  e.  (TopOn `  X ) )
15 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X ) )  /\  g  e.  ( Fil `  X ) )  /\  ( f  e.  (
UFil `  X )  /\  g  C_  f ) )  ->  g  e.  ( Fil `  X ) )
16 simprr 796 . . . . . . . . . . . . 13  |-  ( ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X ) )  /\  g  e.  ( Fil `  X ) )  /\  ( f  e.  (
UFil `  X )  /\  g  C_  f ) )  ->  g  C_  f )
17 fclsss2 21827 . . . . . . . . . . . . 13  |-  ( ( J  e.  (TopOn `  X )  /\  g  e.  ( Fil `  X
)  /\  g  C_  f )  ->  ( J  fClus  f )  C_  ( J  fClus  g ) )
1814, 15, 16, 17syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X ) )  /\  g  e.  ( Fil `  X ) )  /\  ( f  e.  (
UFil `  X )  /\  g  C_  f ) )  ->  ( J  fClus  f )  C_  ( J  fClus  g ) )
19 ssn0 3976 . . . . . . . . . . . . 13  |-  ( ( ( J  fClus  f ) 
C_  ( J  fClus  g )  /\  ( J 
fClus  f )  =/=  (/) )  -> 
( J  fClus  g )  =/=  (/) )
2019ex 450 . . . . . . . . . . . 12  |-  ( ( J  fClus  f )  C_  ( J  fClus  g )  ->  ( ( J 
fClus  f )  =/=  (/)  ->  ( J  fClus  g )  =/=  (/) ) )
2118, 20syl 17 . . . . . . . . . . 11  |-  ( ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X ) )  /\  g  e.  ( Fil `  X ) )  /\  ( f  e.  (
UFil `  X )  /\  g  C_  f ) )  ->  ( ( J  fClus  f )  =/=  (/)  ->  ( J  fClus  g )  =/=  (/) ) )
2221expr 643 . . . . . . . . . 10  |-  ( ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X ) )  /\  g  e.  ( Fil `  X ) )  /\  f  e.  ( UFil `  X ) )  -> 
( g  C_  f  ->  ( ( J  fClus  f )  =/=  (/)  ->  ( J  fClus  g )  =/=  (/) ) ) )
2322com23 86 . . . . . . . . 9  |-  ( ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X ) )  /\  g  e.  ( Fil `  X ) )  /\  f  e.  ( UFil `  X ) )  -> 
( ( J  fClus  f )  =/=  (/)  ->  (
g  C_  f  ->  ( J  fClus  g )  =/=  (/) ) ) )
2423impd 447 . . . . . . . 8  |-  ( ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X ) )  /\  g  e.  ( Fil `  X ) )  /\  f  e.  ( UFil `  X ) )  -> 
( ( ( J 
fClus  f )  =/=  (/)  /\  g  C_  f )  ->  ( J  fClus  g )  =/=  (/) ) )
2524rexlimdva 3031 . . . . . . 7  |-  ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X
) )  /\  g  e.  ( Fil `  X
) )  ->  ( E. f  e.  ( UFil `  X ) ( ( J  fClus  f )  =/=  (/)  /\  g  C_  f )  ->  ( J  fClus  g )  =/=  (/) ) )
2613, 25syl5 34 . . . . . 6  |-  ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X
) )  /\  g  e.  ( Fil `  X
) )  ->  (
( A. f  e.  ( UFil `  X
) ( J  fClus  f )  =/=  (/)  /\  E. f  e.  ( UFil `  X ) g  C_  f )  ->  ( J  fClus  g )  =/=  (/) ) )
2712, 26mpan2d 710 . . . . 5  |-  ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X
) )  /\  g  e.  ( Fil `  X
) )  ->  ( A. f  e.  ( UFil `  X ) ( J  fClus  f )  =/=  (/)  ->  ( J  fClus  g )  =/=  (/) ) )
2827ralrimdva 2969 . . . 4  |-  ( ( X  e. UFL  /\  J  e.  (TopOn `  X )
)  ->  ( A. f  e.  ( UFil `  X ) ( J 
fClus  f )  =/=  (/)  ->  A. g  e.  ( Fil `  X
) ( J  fClus  g )  =/=  (/) ) )
29 fclscmp 21834 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Comp  <->  A. g  e.  ( Fil `  X ) ( J  fClus  g )  =/=  (/) ) )
3029adantl 482 . . . 4  |-  ( ( X  e. UFL  /\  J  e.  (TopOn `  X )
)  ->  ( J  e.  Comp  <->  A. g  e.  ( Fil `  X ) ( J  fClus  g )  =/=  (/) ) )
3128, 30sylibrd 249 . . 3  |-  ( ( X  e. UFL  /\  J  e.  (TopOn `  X )
)  ->  ( A. f  e.  ( UFil `  X ) ( J 
fClus  f )  =/=  (/)  ->  J  e.  Comp ) )
3210, 31impbid 202 . 2  |-  ( ( X  e. UFL  /\  J  e.  (TopOn `  X )
)  ->  ( J  e.  Comp  <->  A. f  e.  (
UFil `  X )
( J  fClus  f )  =/=  (/) ) )
33 uffclsflim 21835 . . . 4  |-  ( f  e.  ( UFil `  X
)  ->  ( J  fClus  f )  =  ( J  fLim  f )
)
3433neeq1d 2853 . . 3  |-  ( f  e.  ( UFil `  X
)  ->  ( ( J  fClus  f )  =/=  (/) 
<->  ( J  fLim  f
)  =/=  (/) ) )
3534ralbiia 2979 . 2  |-  ( A. f  e.  ( UFil `  X ) ( J 
fClus  f )  =/=  (/)  <->  A. f  e.  ( UFil `  X
) ( J  fLim  f )  =/=  (/) )
3632, 35syl6bb 276 1  |-  ( ( X  e. UFL  /\  J  e.  (TopOn `  X )
)  ->  ( J  e.  Comp  <->  A. f  e.  (
UFil `  X )
( J  fLim  f
)  =/=  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   U.cuni 4436   ` cfv 5888  (class class class)co 6650  TopOnctopon 20715   Compccmp 21189   Filcfil 21649   UFilcufil 21703  UFLcufl 21704    fLim cflim 21738    fClus cfcls 21740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cmp 21190  df-fil 21650  df-ufil 21705  df-ufl 21706  df-flim 21743  df-fcls 21745
This theorem is referenced by:  alexsub  21849
  Copyright terms: Public domain W3C validator