| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ufilcmp | Structured version Visualization version Unicode version | ||
| Description: A space is compact iff every ultrafilter converges. (Contributed by Jeff Hankins, 11-Dec-2009.) (Proof shortened by Mario Carneiro, 12-Apr-2015.) (Revised by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| ufilcmp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufilfil 21708 |
. . . . . 6
| |
| 2 | eqid 2622 |
. . . . . . 7
| |
| 3 | 2 | fclscmpi 21833 |
. . . . . 6
|
| 4 | 1, 3 | sylan2 491 |
. . . . 5
|
| 5 | 4 | ralrimiva 2966 |
. . . 4
|
| 6 | toponuni 20719 |
. . . . . . 7
| |
| 7 | 6 | fveq2d 6195 |
. . . . . 6
|
| 8 | 7 | raleqdv 3144 |
. . . . 5
|
| 9 | 8 | adantl 482 |
. . . 4
|
| 10 | 5, 9 | syl5ibr 236 |
. . 3
|
| 11 | ufli 21718 |
. . . . . . 7
| |
| 12 | 11 | adantlr 751 |
. . . . . 6
|
| 13 | r19.29 3072 |
. . . . . . 7
| |
| 14 | simpllr 799 |
. . . . . . . . . . . . 13
| |
| 15 | simplr 792 |
. . . . . . . . . . . . 13
| |
| 16 | simprr 796 |
. . . . . . . . . . . . 13
| |
| 17 | fclsss2 21827 |
. . . . . . . . . . . . 13
| |
| 18 | 14, 15, 16, 17 | syl3anc 1326 |
. . . . . . . . . . . 12
|
| 19 | ssn0 3976 |
. . . . . . . . . . . . 13
| |
| 20 | 19 | ex 450 |
. . . . . . . . . . . 12
|
| 21 | 18, 20 | syl 17 |
. . . . . . . . . . 11
|
| 22 | 21 | expr 643 |
. . . . . . . . . 10
|
| 23 | 22 | com23 86 |
. . . . . . . . 9
|
| 24 | 23 | impd 447 |
. . . . . . . 8
|
| 25 | 24 | rexlimdva 3031 |
. . . . . . 7
|
| 26 | 13, 25 | syl5 34 |
. . . . . 6
|
| 27 | 12, 26 | mpan2d 710 |
. . . . 5
|
| 28 | 27 | ralrimdva 2969 |
. . . 4
|
| 29 | fclscmp 21834 |
. . . . 5
| |
| 30 | 29 | adantl 482 |
. . . 4
|
| 31 | 28, 30 | sylibrd 249 |
. . 3
|
| 32 | 10, 31 | impbid 202 |
. 2
|
| 33 | uffclsflim 21835 |
. . . 4
| |
| 34 | 33 | neeq1d 2853 |
. . 3
|
| 35 | 34 | ralbiia 2979 |
. 2
|
| 36 | 32, 35 | syl6bb 276 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fi 8317 df-fbas 19743 df-fg 19744 df-top 20699 df-topon 20716 df-cld 20823 df-ntr 20824 df-cls 20825 df-nei 20902 df-cmp 21190 df-fil 21650 df-ufil 21705 df-ufl 21706 df-flim 21743 df-fcls 21745 |
| This theorem is referenced by: alexsub 21849 |
| Copyright terms: Public domain | W3C validator |