MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmclm Structured version   Visualization version   Unicode version

Theorem ulmclm 24141
Description: A uniform limit of functions converges pointwise. (Contributed by Mario Carneiro, 27-Feb-2015.)
Hypotheses
Ref Expression
ulmclm.z  |-  Z  =  ( ZZ>= `  M )
ulmclm.m  |-  ( ph  ->  M  e.  ZZ )
ulmclm.f  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
ulmclm.a  |-  ( ph  ->  A  e.  S )
ulmclm.h  |-  ( ph  ->  H  e.  W )
ulmclm.e  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
) `  A )  =  ( H `  k ) )
ulmclm.u  |-  ( ph  ->  F ( ~~> u `  S ) G )
Assertion
Ref Expression
ulmclm  |-  ( ph  ->  H  ~~>  ( G `  A ) )
Distinct variable groups:    A, k    k, F    k, G    ph, k    k, H    k, M    S, k    k, Z
Allowed substitution hint:    W( k)

Proof of Theorem ulmclm
Dummy variables  j  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmclm.u . 2  |-  ( ph  ->  F ( ~~> u `  S ) G )
2 ulmclm.a . . . . . . 7  |-  ( ph  ->  A  e.  S )
3 fveq2 6191 . . . . . . . . . . 11  |-  ( z  =  A  ->  (
( F `  k
) `  z )  =  ( ( F `
 k ) `  A ) )
4 fveq2 6191 . . . . . . . . . . 11  |-  ( z  =  A  ->  ( G `  z )  =  ( G `  A ) )
53, 4oveq12d 6668 . . . . . . . . . 10  |-  ( z  =  A  ->  (
( ( F `  k ) `  z
)  -  ( G `
 z ) )  =  ( ( ( F `  k ) `
 A )  -  ( G `  A ) ) )
65fveq2d 6195 . . . . . . . . 9  |-  ( z  =  A  ->  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  =  ( abs `  ( ( ( F `  k
) `  A )  -  ( G `  A ) ) ) )
76breq1d 4663 . . . . . . . 8  |-  ( z  =  A  ->  (
( abs `  (
( ( F `  k ) `  z
)  -  ( G `
 z ) ) )  <  x  <->  ( abs `  ( ( ( F `
 k ) `  A )  -  ( G `  A )
) )  <  x
) )
87rspcv 3305 . . . . . . 7  |-  ( A  e.  S  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  x  ->  ( abs `  ( ( ( F `  k ) `
 A )  -  ( G `  A ) ) )  <  x
) )
92, 8syl 17 . . . . . 6  |-  ( ph  ->  ( A. z  e.  S  ( abs `  (
( ( F `  k ) `  z
)  -  ( G `
 z ) ) )  <  x  -> 
( abs `  (
( ( F `  k ) `  A
)  -  ( G `
 A ) ) )  <  x ) )
109ralimdv 2963 . . . . 5  |-  ( ph  ->  ( A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  x  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( F `  k ) `  A
)  -  ( G `
 A ) ) )  <  x ) )
1110reximdv 3016 . . . 4  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  x  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( F `  k ) `  A
)  -  ( G `
 A ) ) )  <  x ) )
1211ralimdv 2963 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  x  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( ( F `
 k ) `  A )  -  ( G `  A )
) )  <  x
) )
13 ulmclm.z . . . 4  |-  Z  =  ( ZZ>= `  M )
14 ulmclm.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
15 ulmclm.f . . . 4  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
16 eqidd 2623 . . . 4  |-  ( (
ph  /\  ( k  e.  Z  /\  z  e.  S ) )  -> 
( ( F `  k ) `  z
)  =  ( ( F `  k ) `
 z ) )
17 eqidd 2623 . . . 4  |-  ( (
ph  /\  z  e.  S )  ->  ( G `  z )  =  ( G `  z ) )
18 ulmcl 24135 . . . . 5  |-  ( F ( ~~> u `  S
) G  ->  G : S --> CC )
191, 18syl 17 . . . 4  |-  ( ph  ->  G : S --> CC )
20 ulmscl 24133 . . . . 5  |-  ( F ( ~~> u `  S
) G  ->  S  e.  _V )
211, 20syl 17 . . . 4  |-  ( ph  ->  S  e.  _V )
2213, 14, 15, 16, 17, 19, 21ulm2 24139 . . 3  |-  ( ph  ->  ( F ( ~~> u `  S ) G  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  x ) )
23 ulmclm.h . . . 4  |-  ( ph  ->  H  e.  W )
24 ulmclm.e . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
) `  A )  =  ( H `  k ) )
2524eqcomd 2628 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( ( F `
 k ) `  A ) )
2619, 2ffvelrnd 6360 . . . 4  |-  ( ph  ->  ( G `  A
)  e.  CC )
2715ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  ( CC  ^m  S
) )
28 elmapi 7879 . . . . . 6  |-  ( ( F `  k )  e.  ( CC  ^m  S )  ->  ( F `  k ) : S --> CC )
2927, 28syl 17 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k ) : S --> CC )
302adantr 481 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  S )
3129, 30ffvelrnd 6360 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
) `  A )  e.  CC )
3213, 14, 23, 25, 26, 31clim2c 14236 . . 3  |-  ( ph  ->  ( H  ~~>  ( G `
 A )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( F `  k ) `  A
)  -  ( G `
 A ) ) )  <  x ) )
3312, 22, 323imtr4d 283 . 2  |-  ( ph  ->  ( F ( ~~> u `  S ) G  ->  H 
~~>  ( G `  A
) ) )
341, 33mpd 15 1  |-  ( ph  ->  H  ~~>  ( G `  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   CCcc 9934    < clt 10074    - cmin 10266   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   abscabs 13974    ~~> cli 14215   ~~> uculm 24130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688  df-clim 14219  df-ulm 24131
This theorem is referenced by:  ulmuni  24146  ulmdvlem3  24156  mbfulm  24160  pserulm  24176  lgamgulm2  24762  lgamcvglem  24766  knoppcnlem9  32491  knoppndvlem4  32506
  Copyright terms: Public domain W3C validator