MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmuni Structured version   Visualization version   Unicode version

Theorem ulmuni 24146
Description: An sequence of functions uniformly converges to at most one limit. (Contributed by Mario Carneiro, 5-Jul-2017.)
Assertion
Ref Expression
ulmuni  |-  ( ( F ( ~~> u `  S ) G  /\  F ( ~~> u `  S ) H )  ->  G  =  H )

Proof of Theorem ulmuni
Dummy variables  i 
k  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmcl 24135 . . . 4  |-  ( F ( ~~> u `  S
) G  ->  G : S --> CC )
21adantr 481 . . 3  |-  ( ( F ( ~~> u `  S ) G  /\  F ( ~~> u `  S ) H )  ->  G : S --> CC )
3 ffn 6045 . . 3  |-  ( G : S --> CC  ->  G  Fn  S )
42, 3syl 17 . 2  |-  ( ( F ( ~~> u `  S ) G  /\  F ( ~~> u `  S ) H )  ->  G  Fn  S
)
5 ulmcl 24135 . . . 4  |-  ( F ( ~~> u `  S
) H  ->  H : S --> CC )
65adantl 482 . . 3  |-  ( ( F ( ~~> u `  S ) G  /\  F ( ~~> u `  S ) H )  ->  H : S --> CC )
7 ffn 6045 . . 3  |-  ( H : S --> CC  ->  H  Fn  S )
86, 7syl 17 . 2  |-  ( ( F ( ~~> u `  S ) G  /\  F ( ~~> u `  S ) H )  ->  H  Fn  S
)
9 eqid 2622 . . . . 5  |-  ( ZZ>= `  n )  =  (
ZZ>= `  n )
10 simplr 792 . . . . 5  |-  ( ( ( ( ( F ( ~~> u `  S
) G  /\  F
( ~~> u `  S
) H )  /\  x  e.  S )  /\  n  e.  ZZ )  /\  F : (
ZZ>= `  n ) --> ( CC  ^m  S ) )  ->  n  e.  ZZ )
11 simpr 477 . . . . 5  |-  ( ( ( ( ( F ( ~~> u `  S
) G  /\  F
( ~~> u `  S
) H )  /\  x  e.  S )  /\  n  e.  ZZ )  /\  F : (
ZZ>= `  n ) --> ( CC  ^m  S ) )  ->  F :
( ZZ>= `  n ) --> ( CC  ^m  S ) )
12 simpllr 799 . . . . 5  |-  ( ( ( ( ( F ( ~~> u `  S
) G  /\  F
( ~~> u `  S
) H )  /\  x  e.  S )  /\  n  e.  ZZ )  /\  F : (
ZZ>= `  n ) --> ( CC  ^m  S ) )  ->  x  e.  S )
13 fvex 6201 . . . . . . 7  |-  ( ZZ>= `  n )  e.  _V
1413mptex 6486 . . . . . 6  |-  ( i  e.  ( ZZ>= `  n
)  |->  ( ( F `
 i ) `  x ) )  e. 
_V
1514a1i 11 . . . . 5  |-  ( ( ( ( ( F ( ~~> u `  S
) G  /\  F
( ~~> u `  S
) H )  /\  x  e.  S )  /\  n  e.  ZZ )  /\  F : (
ZZ>= `  n ) --> ( CC  ^m  S ) )  ->  ( i  e.  ( ZZ>= `  n )  |->  ( ( F `  i ) `  x
) )  e.  _V )
16 fveq2 6191 . . . . . . . . 9  |-  ( i  =  k  ->  ( F `  i )  =  ( F `  k ) )
1716fveq1d 6193 . . . . . . . 8  |-  ( i  =  k  ->  (
( F `  i
) `  x )  =  ( ( F `
 k ) `  x ) )
18 eqid 2622 . . . . . . . 8  |-  ( i  e.  ( ZZ>= `  n
)  |->  ( ( F `
 i ) `  x ) )  =  ( i  e.  (
ZZ>= `  n )  |->  ( ( F `  i
) `  x )
)
19 fvex 6201 . . . . . . . 8  |-  ( ( F `  k ) `
 x )  e. 
_V
2017, 18, 19fvmpt 6282 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  n
)  ->  ( (
i  e.  ( ZZ>= `  n )  |->  ( ( F `  i ) `
 x ) ) `
 k )  =  ( ( F `  k ) `  x
) )
2120eqcomd 2628 . . . . . 6  |-  ( k  e.  ( ZZ>= `  n
)  ->  ( ( F `  k ) `  x )  =  ( ( i  e.  (
ZZ>= `  n )  |->  ( ( F `  i
) `  x )
) `  k )
)
2221adantl 482 . . . . 5  |-  ( ( ( ( ( ( F ( ~~> u `  S ) G  /\  F ( ~~> u `  S ) H )  /\  x  e.  S
)  /\  n  e.  ZZ )  /\  F :
( ZZ>= `  n ) --> ( CC  ^m  S ) )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  k ) `  x )  =  ( ( i  e.  (
ZZ>= `  n )  |->  ( ( F `  i
) `  x )
) `  k )
)
23 simp-4l 806 . . . . 5  |-  ( ( ( ( ( F ( ~~> u `  S
) G  /\  F
( ~~> u `  S
) H )  /\  x  e.  S )  /\  n  e.  ZZ )  /\  F : (
ZZ>= `  n ) --> ( CC  ^m  S ) )  ->  F ( ~~> u `  S ) G )
249, 10, 11, 12, 15, 22, 23ulmclm 24141 . . . 4  |-  ( ( ( ( ( F ( ~~> u `  S
) G  /\  F
( ~~> u `  S
) H )  /\  x  e.  S )  /\  n  e.  ZZ )  /\  F : (
ZZ>= `  n ) --> ( CC  ^m  S ) )  ->  ( i  e.  ( ZZ>= `  n )  |->  ( ( F `  i ) `  x
) )  ~~>  ( G `
 x ) )
25 simp-4r 807 . . . . 5  |-  ( ( ( ( ( F ( ~~> u `  S
) G  /\  F
( ~~> u `  S
) H )  /\  x  e.  S )  /\  n  e.  ZZ )  /\  F : (
ZZ>= `  n ) --> ( CC  ^m  S ) )  ->  F ( ~~> u `  S ) H )
269, 10, 11, 12, 15, 22, 25ulmclm 24141 . . . 4  |-  ( ( ( ( ( F ( ~~> u `  S
) G  /\  F
( ~~> u `  S
) H )  /\  x  e.  S )  /\  n  e.  ZZ )  /\  F : (
ZZ>= `  n ) --> ( CC  ^m  S ) )  ->  ( i  e.  ( ZZ>= `  n )  |->  ( ( F `  i ) `  x
) )  ~~>  ( H `
 x ) )
27 climuni 14283 . . . 4  |-  ( ( ( i  e.  (
ZZ>= `  n )  |->  ( ( F `  i
) `  x )
)  ~~>  ( G `  x )  /\  (
i  e.  ( ZZ>= `  n )  |->  ( ( F `  i ) `
 x ) )  ~~>  ( H `  x
) )  ->  ( G `  x )  =  ( H `  x ) )
2824, 26, 27syl2anc 693 . . 3  |-  ( ( ( ( ( F ( ~~> u `  S
) G  /\  F
( ~~> u `  S
) H )  /\  x  e.  S )  /\  n  e.  ZZ )  /\  F : (
ZZ>= `  n ) --> ( CC  ^m  S ) )  ->  ( G `  x )  =  ( H `  x ) )
29 ulmf 24136 . . . 4  |-  ( F ( ~~> u `  S
) G  ->  E. n  e.  ZZ  F : (
ZZ>= `  n ) --> ( CC  ^m  S ) )
3029ad2antrr 762 . . 3  |-  ( ( ( F ( ~~> u `  S ) G  /\  F ( ~~> u `  S ) H )  /\  x  e.  S
)  ->  E. n  e.  ZZ  F : (
ZZ>= `  n ) --> ( CC  ^m  S ) )
3128, 30r19.29a 3078 . 2  |-  ( ( ( F ( ~~> u `  S ) G  /\  F ( ~~> u `  S ) H )  /\  x  e.  S
)  ->  ( G `  x )  =  ( H `  x ) )
324, 8, 31eqfnfvd 6314 1  |-  ( ( F ( ~~> u `  S ) G  /\  F ( ~~> u `  S ) H )  ->  G  =  H )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   CCcc 9934   ZZcz 11377   ZZ>=cuz 11687    ~~> cli 14215   ~~> uculm 24130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-ulm 24131
This theorem is referenced by:  ulmdm  24147
  Copyright terms: Public domain W3C validator