Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem9 Structured version   Visualization version   Unicode version

Theorem knoppcnlem9 32491
Description: Lemma for knoppcn 32494. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem9.t  |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  / 
2 ) ) )  -  x ) ) )
knoppcnlem9.f  |-  F  =  ( y  e.  RR  |->  ( n  e.  NN0  |->  ( ( C ^
n )  x.  ( T `  ( (
( 2  x.  N
) ^ n )  x.  y ) ) ) ) )
knoppcnlem9.w  |-  W  =  ( w  e.  RR  |->  sum_ i  e.  NN0  (
( F `  w
) `  i )
)
knoppcnlem9.n  |-  ( ph  ->  N  e.  NN )
knoppcnlem9.1  |-  ( ph  ->  C  e.  RR )
knoppcnlem9.2  |-  ( ph  ->  ( abs `  C
)  <  1 )
Assertion
Ref Expression
knoppcnlem9  |-  ( ph  ->  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) W )
Distinct variable groups:    C, m, n, y    i, F, m, w, z    n, N, y    x, N    T, n, y    ph, i, m, w, z, n, y   
x, i, m, w, z
Allowed substitution hints:    ph( x)    C( x, z, w, i)    T( x, z, w, i, m)    F( x, y, n)    N( z, w, i, m)    W( x, y, z, w, i, m, n)

Proof of Theorem knoppcnlem9
Dummy variables  f 
k  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 knoppcnlem9.t . . . 4  |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  / 
2 ) ) )  -  x ) ) )
2 knoppcnlem9.f . . . 4  |-  F  =  ( y  e.  RR  |->  ( n  e.  NN0  |->  ( ( C ^
n )  x.  ( T `  ( (
( 2  x.  N
) ^ n )  x.  y ) ) ) ) )
3 knoppcnlem9.n . . . 4  |-  ( ph  ->  N  e.  NN )
4 knoppcnlem9.1 . . . 4  |-  ( ph  ->  C  e.  RR )
5 knoppcnlem9.2 . . . 4  |-  ( ph  ->  ( abs `  C
)  <  1 )
61, 2, 3, 4, 5knoppcnlem6 32488 . . 3  |-  ( ph  ->  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) )  e.  dom  (
~~> u `  RR ) )
7 seqex 12803 . . . 4  |-  seq 0
(  oF  +  ,  ( m  e. 
NN0  |->  ( z  e.  RR  |->  ( ( F `
 z ) `  m ) ) ) )  e.  _V
87eldm 5321 . . 3  |-  (  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) )  e.  dom  (
~~> u `  RR )  <->  E. f  seq 0
(  oF  +  ,  ( m  e. 
NN0  |->  ( z  e.  RR  |->  ( ( F `
 z ) `  m ) ) ) ) ( ~~> u `  RR ) f )
96, 8sylib 208 . 2  |-  ( ph  ->  E. f  seq 0
(  oF  +  ,  ( m  e. 
NN0  |->  ( z  e.  RR  |->  ( ( F `
 z ) `  m ) ) ) ) ( ~~> u `  RR ) f )
10 simpr 477 . . . . 5  |-  ( (
ph  /\  seq 0
(  oF  +  ,  ( m  e. 
NN0  |->  ( z  e.  RR  |->  ( ( F `
 z ) `  m ) ) ) ) ( ~~> u `  RR ) f )  ->  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) f )
11 ulmcl 24135 . . . . . . . 8  |-  (  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) f  ->  f : RR --> CC )
1211feqmptd 6249 . . . . . . 7  |-  (  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) f  ->  f  =  ( w  e.  RR  |->  ( f `  w ) ) )
1312adantl 482 . . . . . 6  |-  ( (
ph  /\  seq 0
(  oF  +  ,  ( m  e. 
NN0  |->  ( z  e.  RR  |->  ( ( F `
 z ) `  m ) ) ) ) ( ~~> u `  RR ) f )  -> 
f  =  ( w  e.  RR  |->  ( f `
 w ) ) )
14 nn0uz 11722 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
15 0zd 11389 . . . . . . . . 9  |-  ( ( ( ph  /\  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) f )  /\  w  e.  RR )  ->  0  e.  ZZ )
16 eqidd 2623 . . . . . . . . 9  |-  ( ( ( ( ph  /\  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) f )  /\  w  e.  RR )  /\  i  e.  NN0 )  ->  ( ( F `
 w ) `  i )  =  ( ( F `  w
) `  i )
)
173ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  RR )  /\  i  e.  NN0 )  ->  N  e.  NN )
184ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  RR )  /\  i  e.  NN0 )  ->  C  e.  RR )
19 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  RR )  /\  i  e.  NN0 )  ->  w  e.  RR )
20 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  RR )  /\  i  e.  NN0 )  ->  i  e.  NN0 )
211, 2, 17, 18, 19, 20knoppcnlem3 32485 . . . . . . . . . . 11  |-  ( ( ( ph  /\  w  e.  RR )  /\  i  e.  NN0 )  ->  (
( F `  w
) `  i )  e.  RR )
2221adantllr 755 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) f )  /\  w  e.  RR )  /\  i  e.  NN0 )  ->  ( ( F `
 w ) `  i )  e.  RR )
2322recnd 10068 . . . . . . . . 9  |-  ( ( ( ( ph  /\  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) f )  /\  w  e.  RR )  /\  i  e.  NN0 )  ->  ( ( F `
 w ) `  i )  e.  CC )
241, 2, 3, 4knoppcnlem8 32490 . . . . . . . . . . 11  |-  ( ph  ->  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) : NN0 --> ( CC  ^m  RR ) )
2524ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) f )  /\  w  e.  RR )  ->  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) : NN0 --> ( CC  ^m  RR ) )
26 simpr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) f )  /\  w  e.  RR )  ->  w  e.  RR )
27 seqex 12803 . . . . . . . . . . 11  |-  seq 0
(  +  ,  ( F `  w ) )  e.  _V
2827a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) f )  /\  w  e.  RR )  ->  seq 0 (  +  ,  ( F `  w ) )  e. 
_V )
293ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  w  e.  RR )  /\  k  e.  NN0 )  ->  N  e.  NN )
304ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  w  e.  RR )  /\  k  e.  NN0 )  ->  C  e.  RR )
31 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  w  e.  RR )  /\  k  e.  NN0 )  ->  k  e.  NN0 )
321, 2, 29, 30, 31knoppcnlem7 32489 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  e.  RR )  /\  k  e.  NN0 )  ->  (  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) `  k
)  =  ( v  e.  RR  |->  (  seq 0 (  +  , 
( F `  v
) ) `  k
) ) )
3332adantllr 755 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) f )  /\  w  e.  RR )  /\  k  e.  NN0 )  ->  (  seq 0
(  oF  +  ,  ( m  e. 
NN0  |->  ( z  e.  RR  |->  ( ( F `
 z ) `  m ) ) ) ) `  k )  =  ( v  e.  RR  |->  (  seq 0
(  +  ,  ( F `  v ) ) `  k ) ) )
3433fveq1d 6193 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) f )  /\  w  e.  RR )  /\  k  e.  NN0 )  ->  ( (  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) `  k
) `  w )  =  ( ( v  e.  RR  |->  (  seq 0 (  +  , 
( F `  v
) ) `  k
) ) `  w
) )
35 eqid 2622 . . . . . . . . . . . . 13  |-  ( v  e.  RR  |->  (  seq 0 (  +  , 
( F `  v
) ) `  k
) )  =  ( v  e.  RR  |->  (  seq 0 (  +  ,  ( F `  v ) ) `  k ) )
3635a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) f )  /\  w  e.  RR )  /\  k  e.  NN0 )  ->  ( v  e.  RR  |->  (  seq 0
(  +  ,  ( F `  v ) ) `  k ) )  =  ( v  e.  RR  |->  (  seq 0 (  +  , 
( F `  v
) ) `  k
) ) )
37 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( v  =  w  ->  ( F `  v )  =  ( F `  w ) )
3837seqeq3d 12809 . . . . . . . . . . . . . 14  |-  ( v  =  w  ->  seq 0 (  +  , 
( F `  v
) )  =  seq 0 (  +  , 
( F `  w
) ) )
3938fveq1d 6193 . . . . . . . . . . . . 13  |-  ( v  =  w  ->  (  seq 0 (  +  , 
( F `  v
) ) `  k
)  =  (  seq 0 (  +  , 
( F `  w
) ) `  k
) )
4039adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\ 
seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) f )  /\  w  e.  RR )  /\  k  e.  NN0 )  /\  v  =  w )  ->  (  seq 0 (  +  , 
( F `  v
) ) `  k
)  =  (  seq 0 (  +  , 
( F `  w
) ) `  k
) )
4126adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) f )  /\  w  e.  RR )  /\  k  e.  NN0 )  ->  w  e.  RR )
42 fvexd 6203 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) f )  /\  w  e.  RR )  /\  k  e.  NN0 )  ->  (  seq 0
(  +  ,  ( F `  w ) ) `  k )  e.  _V )
4336, 40, 41, 42fvmptd 6288 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) f )  /\  w  e.  RR )  /\  k  e.  NN0 )  ->  ( ( v  e.  RR  |->  (  seq 0 (  +  , 
( F `  v
) ) `  k
) ) `  w
)  =  (  seq 0 (  +  , 
( F `  w
) ) `  k
) )
4434, 43eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) f )  /\  w  e.  RR )  /\  k  e.  NN0 )  ->  ( (  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) `  k
) `  w )  =  (  seq 0
(  +  ,  ( F `  w ) ) `  k ) )
45 simplr 792 . . . . . . . . . 10  |-  ( ( ( ph  /\  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) f )  /\  w  e.  RR )  ->  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) f )
4614, 15, 25, 26, 28, 44, 45ulmclm 24141 . . . . . . . . 9  |-  ( ( ( ph  /\  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) f )  /\  w  e.  RR )  ->  seq 0 (  +  ,  ( F `  w ) )  ~~>  ( f `
 w ) )
4714, 15, 16, 23, 46isumclim 14488 . . . . . . . 8  |-  ( ( ( ph  /\  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) f )  /\  w  e.  RR )  -> 
sum_ i  e.  NN0  ( ( F `  w ) `  i
)  =  ( f `
 w ) )
4847eqcomd 2628 . . . . . . 7  |-  ( ( ( ph  /\  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) f )  /\  w  e.  RR )  ->  ( f `  w
)  =  sum_ i  e.  NN0  ( ( F `
 w ) `  i ) )
4948mpteq2dva 4744 . . . . . 6  |-  ( (
ph  /\  seq 0
(  oF  +  ,  ( m  e. 
NN0  |->  ( z  e.  RR  |->  ( ( F `
 z ) `  m ) ) ) ) ( ~~> u `  RR ) f )  -> 
( w  e.  RR  |->  ( f `  w
) )  =  ( w  e.  RR  |->  sum_ i  e.  NN0  (
( F `  w
) `  i )
) )
50 knoppcnlem9.w . . . . . . . 8  |-  W  =  ( w  e.  RR  |->  sum_ i  e.  NN0  (
( F `  w
) `  i )
)
5150a1i 11 . . . . . . 7  |-  ( (
ph  /\  seq 0
(  oF  +  ,  ( m  e. 
NN0  |->  ( z  e.  RR  |->  ( ( F `
 z ) `  m ) ) ) ) ( ~~> u `  RR ) f )  ->  W  =  ( w  e.  RR  |->  sum_ i  e.  NN0  ( ( F `  w ) `  i
) ) )
5251eqcomd 2628 . . . . . 6  |-  ( (
ph  /\  seq 0
(  oF  +  ,  ( m  e. 
NN0  |->  ( z  e.  RR  |->  ( ( F `
 z ) `  m ) ) ) ) ( ~~> u `  RR ) f )  -> 
( w  e.  RR  |->  sum_ i  e.  NN0  (
( F `  w
) `  i )
)  =  W )
5313, 49, 523eqtrd 2660 . . . . 5  |-  ( (
ph  /\  seq 0
(  oF  +  ,  ( m  e. 
NN0  |->  ( z  e.  RR  |->  ( ( F `
 z ) `  m ) ) ) ) ( ~~> u `  RR ) f )  -> 
f  =  W )
5410, 53breqtrd 4679 . . . 4  |-  ( (
ph  /\  seq 0
(  oF  +  ,  ( m  e. 
NN0  |->  ( z  e.  RR  |->  ( ( F `
 z ) `  m ) ) ) ) ( ~~> u `  RR ) f )  ->  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) W )
5554ex 450 . . 3  |-  ( ph  ->  (  seq 0 (  oF  +  , 
( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `  m
) ) ) ) ( ~~> u `  RR ) f  ->  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) W ) )
5655exlimdv 1861 . 2  |-  ( ph  ->  ( E. f  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) f  ->  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) W ) )
579, 56mpd 15 1  |-  ( ph  ->  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
 m ) ) ) ) ( ~~> u `  RR ) W )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895    ^m cmap 7857   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   |_cfl 12591    seqcseq 12801   ^cexp 12860   abscabs 13974   sum_csu 14416   ~~> uculm 24130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ulm 24131
This theorem is referenced by:  knoppcn  32494  knoppndvlem4  32506
  Copyright terms: Public domain W3C validator