MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unirnblps Structured version   Visualization version   Unicode version

Theorem unirnblps 22224
Description: The union of the set of balls of a metric space is its base set. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
unirnblps  |-  ( D  e.  (PsMet `  X
)  ->  U. ran  ( ball `  D )  =  X )

Proof of Theorem unirnblps
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 blfps 22211 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  ( ball `  D ) : ( X  X.  RR* ) --> ~P X )
2 frn 6053 . . . 4  |-  ( (
ball `  D ) : ( X  X.  RR* ) --> ~P X  ->  ran  ( ball `  D
)  C_  ~P X
)
31, 2syl 17 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ran  ( ball `  D )  C_  ~P X )
4 sspwuni 4611 . . 3  |-  ( ran  ( ball `  D
)  C_  ~P X  <->  U.
ran  ( ball `  D
)  C_  X )
53, 4sylib 208 . 2  |-  ( D  e.  (PsMet `  X
)  ->  U. ran  ( ball `  D )  C_  X )
6 1rp 11836 . . . . . 6  |-  1  e.  RR+
7 blcntrps 22217 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X  /\  1  e.  RR+ )  ->  x  e.  ( x ( ball `  D ) 1 ) )
86, 7mp3an3 1413 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X )  ->  x  e.  ( x ( ball `  D ) 1 ) )
9 rpxr 11840 . . . . . . 7  |-  ( 1  e.  RR+  ->  1  e. 
RR* )
106, 9ax-mp 5 . . . . . 6  |-  1  e.  RR*
11 blelrnps 22221 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X  /\  1  e.  RR* )  ->  (
x ( ball `  D
) 1 )  e. 
ran  ( ball `  D
) )
1210, 11mp3an3 1413 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X )  ->  (
x ( ball `  D
) 1 )  e. 
ran  ( ball `  D
) )
13 elunii 4441 . . . . 5  |-  ( ( x  e.  ( x ( ball `  D
) 1 )  /\  ( x ( ball `  D ) 1 )  e.  ran  ( ball `  D ) )  ->  x  e.  U. ran  ( ball `  D ) )
148, 12, 13syl2anc 693 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  X )  ->  x  e.  U. ran  ( ball `  D ) )
1514ex 450 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ( x  e.  X  ->  x  e. 
U. ran  ( ball `  D ) ) )
1615ssrdv 3609 . 2  |-  ( D  e.  (PsMet `  X
)  ->  X  C_  U. ran  ( ball `  D )
)
175, 16eqssd 3620 1  |-  ( D  e.  (PsMet `  X
)  ->  U. ran  ( ball `  D )  =  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   ~Pcpw 4158   U.cuni 4436    X. cxp 5112   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   1c1 9937   RR*cxr 10073   RR+crp 11832  PsMetcpsmet 19730   ballcbl 19733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-rp 11833  df-psmet 19738  df-bl 19741
This theorem is referenced by:  psmetutop  22372
  Copyright terms: Public domain W3C validator