MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthwelem Structured version   Visualization version   Unicode version

Theorem canthwelem 9472
Description: Lemma for canthwe 9473. (Contributed by Mario Carneiro, 31-May-2015.)
Hypotheses
Ref Expression
canthwe.1  |-  O  =  { <. x ,  r
>.  |  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) }
canthwe.2  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. (
u F ( r  i^i  ( u  X.  u ) ) )  =  y ) ) }
canthwe.3  |-  B  = 
U. dom  W
canthwe.4  |-  C  =  ( `' ( W `
 B ) " { ( B F ( W `  B
) ) } )
Assertion
Ref Expression
canthwelem  |-  ( A  e.  V  ->  -.  F : O -1-1-> A )
Distinct variable groups:    u, r, x, y, B    C, r, x    O, r, u, x, y    V, r, u, x, y    A, r, u, x, y    F, r, u, x, y    W, r, u, x, y
Allowed substitution hints:    C( y, u)

Proof of Theorem canthwelem
StepHypRef Expression
1 eqid 2622 . . . . . . . 8  |-  B  =  B
2 eqid 2622 . . . . . . . 8  |-  ( W `
 B )  =  ( W `  B
)
31, 2pm3.2i 471 . . . . . . 7  |-  ( B  =  B  /\  ( W `  B )  =  ( W `  B ) )
4 canthwe.2 . . . . . . . 8  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. (
u F ( r  i^i  ( u  X.  u ) ) )  =  y ) ) }
5 elex 3212 . . . . . . . . 9  |-  ( A  e.  V  ->  A  e.  _V )
65adantr 481 . . . . . . . 8  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  A  e.  _V )
7 df-ov 6653 . . . . . . . . 9  |-  ( x F r )  =  ( F `  <. x ,  r >. )
8 f1f 6101 . . . . . . . . . . 11  |-  ( F : O -1-1-> A  ->  F : O --> A )
98ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F : O -1-1-> A
)  /\  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) )  ->  F : O --> A )
10 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  F : O -1-1-> A
)  /\  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) )  -> 
( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )
)
11 opabid 4982 . . . . . . . . . . . 12  |-  ( <.
x ,  r >.  e.  { <. x ,  r
>.  |  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) }  <->  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) )
1210, 11sylibr 224 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  F : O -1-1-> A
)  /\  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) )  ->  <. x ,  r >.  e.  { <. x ,  r
>.  |  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) } )
13 canthwe.1 . . . . . . . . . . 11  |-  O  =  { <. x ,  r
>.  |  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) }
1412, 13syl6eleqr 2712 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F : O -1-1-> A
)  /\  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) )  ->  <. x ,  r >.  e.  O )
159, 14ffvelrnd 6360 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  F : O -1-1-> A
)  /\  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) )  -> 
( F `  <. x ,  r >. )  e.  A )
167, 15syl5eqel 2705 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  F : O -1-1-> A
)  /\  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) )  -> 
( x F r )  e.  A )
17 canthwe.3 . . . . . . . 8  |-  B  = 
U. dom  W
184, 6, 16, 17fpwwe2 9465 . . . . . . 7  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  ( ( B W ( W `  B )  /\  ( B F ( W `  B ) )  e.  B )  <->  ( B  =  B  /\  ( W `  B )  =  ( W `  B ) ) ) )
193, 18mpbiri 248 . . . . . 6  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  ( B W ( W `  B
)  /\  ( B F ( W `  B ) )  e.  B ) )
2019simprd 479 . . . . 5  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  ( B F ( W `  B
) )  e.  B
)
21 canthwe.4 . . . . . . . . . 10  |-  C  =  ( `' ( W `
 B ) " { ( B F ( W `  B
) ) } )
2221, 21xpeq12i 5137 . . . . . . . . . . 11  |-  ( C  X.  C )  =  ( ( `' ( W `  B )
" { ( B F ( W `  B ) ) } )  X.  ( `' ( W `  B
) " { ( B F ( W `
 B ) ) } ) )
2322ineq2i 3811 . . . . . . . . . 10  |-  ( ( W `  B )  i^i  ( C  X.  C ) )  =  ( ( W `  B )  i^i  (
( `' ( W `
 B ) " { ( B F ( W `  B
) ) } )  X.  ( `' ( W `  B )
" { ( B F ( W `  B ) ) } ) ) )
2421, 23oveq12i 6662 . . . . . . . . 9  |-  ( C F ( ( W `
 B )  i^i  ( C  X.  C
) ) )  =  ( ( `' ( W `  B )
" { ( B F ( W `  B ) ) } ) F ( ( W `  B )  i^i  ( ( `' ( W `  B
) " { ( B F ( W `
 B ) ) } )  X.  ( `' ( W `  B ) " {
( B F ( W `  B ) ) } ) ) ) )
2519simpld 475 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  B W ( W `  B ) )
264, 6, 25fpwwe2lem3 9455 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  F : O -1-1-> A
)  /\  ( B F ( W `  B ) )  e.  B )  ->  (
( `' ( W `
 B ) " { ( B F ( W `  B
) ) } ) F ( ( W `
 B )  i^i  ( ( `' ( W `  B )
" { ( B F ( W `  B ) ) } )  X.  ( `' ( W `  B
) " { ( B F ( W `
 B ) ) } ) ) ) )  =  ( B F ( W `  B ) ) )
2720, 26mpdan 702 . . . . . . . . 9  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  ( ( `' ( W `  B
) " { ( B F ( W `
 B ) ) } ) F ( ( W `  B
)  i^i  ( ( `' ( W `  B ) " {
( B F ( W `  B ) ) } )  X.  ( `' ( W `
 B ) " { ( B F ( W `  B
) ) } ) ) ) )  =  ( B F ( W `  B ) ) )
2824, 27syl5eq 2668 . . . . . . . 8  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  ( C F ( ( W `  B )  i^i  ( C  X.  C ) ) )  =  ( B F ( W `  B ) ) )
29 df-ov 6653 . . . . . . . 8  |-  ( C F ( ( W `
 B )  i^i  ( C  X.  C
) ) )  =  ( F `  <. C ,  ( ( W `
 B )  i^i  ( C  X.  C
) ) >. )
30 df-ov 6653 . . . . . . . 8  |-  ( B F ( W `  B ) )  =  ( F `  <. B ,  ( W `  B ) >. )
3128, 29, 303eqtr3g 2679 . . . . . . 7  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  ( F `  <. C ,  ( ( W `  B )  i^i  ( C  X.  C ) ) >.
)  =  ( F `
 <. B ,  ( W `  B )
>. ) )
32 simpr 477 . . . . . . . 8  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  F : O -1-1-> A )
33 cnvimass 5485 . . . . . . . . . . . . 13  |-  ( `' ( W `  B
) " { ( B F ( W `
 B ) ) } )  C_  dom  ( W `  B )
344, 6fpwwe2lem2 9454 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  ( B W ( W `  B
)  <->  ( ( B 
C_  A  /\  ( W `  B )  C_  ( B  X.  B
) )  /\  (
( W `  B
)  We  B  /\  A. y  e.  B  [. ( `' ( W `  B ) " {
y } )  /  u ]. ( u F ( ( W `  B )  i^i  (
u  X.  u ) ) )  =  y ) ) ) )
3525, 34mpbid 222 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  ( ( B 
C_  A  /\  ( W `  B )  C_  ( B  X.  B
) )  /\  (
( W `  B
)  We  B  /\  A. y  e.  B  [. ( `' ( W `  B ) " {
y } )  /  u ]. ( u F ( ( W `  B )  i^i  (
u  X.  u ) ) )  =  y ) ) )
3635simpld 475 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  ( B  C_  A  /\  ( W `  B )  C_  ( B  X.  B ) ) )
3736simprd 479 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  ( W `  B )  C_  ( B  X.  B ) )
38 dmss 5323 . . . . . . . . . . . . . . 15  |-  ( ( W `  B ) 
C_  ( B  X.  B )  ->  dom  ( W `  B ) 
C_  dom  ( B  X.  B ) )
3937, 38syl 17 . . . . . . . . . . . . . 14  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  dom  ( W `  B )  C_  dom  ( B  X.  B
) )
40 dmxpss 5565 . . . . . . . . . . . . . 14  |-  dom  ( B  X.  B )  C_  B
4139, 40syl6ss 3615 . . . . . . . . . . . . 13  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  dom  ( W `  B )  C_  B
)
4233, 41syl5ss 3614 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  ( `' ( W `  B )
" { ( B F ( W `  B ) ) } )  C_  B )
4321, 42syl5eqss 3649 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  C  C_  B
)
4436simpld 475 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  B  C_  A
)
4543, 44sstrd 3613 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  C  C_  A
)
46 inss2 3834 . . . . . . . . . . 11  |-  ( ( W `  B )  i^i  ( C  X.  C ) )  C_  ( C  X.  C
)
4746a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  ( ( W `
 B )  i^i  ( C  X.  C
) )  C_  ( C  X.  C ) )
4835simprd 479 . . . . . . . . . . . . 13  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  ( ( W `
 B )  We  B  /\  A. y  e.  B  [. ( `' ( W `  B
) " { y } )  /  u ]. ( u F ( ( W `  B
)  i^i  ( u  X.  u ) ) )  =  y ) )
4948simpld 475 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  ( W `  B )  We  B
)
50 wess 5101 . . . . . . . . . . . 12  |-  ( C 
C_  B  ->  (
( W `  B
)  We  B  -> 
( W `  B
)  We  C ) )
5143, 49, 50sylc 65 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  ( W `  B )  We  C
)
52 weinxp 5186 . . . . . . . . . . 11  |-  ( ( W `  B )  We  C  <->  ( ( W `  B )  i^i  ( C  X.  C
) )  We  C
)
5351, 52sylib 208 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  ( ( W `
 B )  i^i  ( C  X.  C
) )  We  C
)
54 fvex 6201 . . . . . . . . . . . . . 14  |-  ( W `
 B )  e. 
_V
5554cnvex 7113 . . . . . . . . . . . . 13  |-  `' ( W `  B )  e.  _V
5655imaex 7104 . . . . . . . . . . . 12  |-  ( `' ( W `  B
) " { ( B F ( W `
 B ) ) } )  e.  _V
5721, 56eqeltri 2697 . . . . . . . . . . 11  |-  C  e. 
_V
5854inex1 4799 . . . . . . . . . . 11  |-  ( ( W `  B )  i^i  ( C  X.  C ) )  e. 
_V
59 simpl 473 . . . . . . . . . . . . 13  |-  ( ( x  =  C  /\  r  =  ( ( W `  B )  i^i  ( C  X.  C
) ) )  ->  x  =  C )
6059sseq1d 3632 . . . . . . . . . . . 12  |-  ( ( x  =  C  /\  r  =  ( ( W `  B )  i^i  ( C  X.  C
) ) )  -> 
( x  C_  A  <->  C 
C_  A ) )
61 simpr 477 . . . . . . . . . . . . 13  |-  ( ( x  =  C  /\  r  =  ( ( W `  B )  i^i  ( C  X.  C
) ) )  -> 
r  =  ( ( W `  B )  i^i  ( C  X.  C ) ) )
6259sqxpeqd 5141 . . . . . . . . . . . . 13  |-  ( ( x  =  C  /\  r  =  ( ( W `  B )  i^i  ( C  X.  C
) ) )  -> 
( x  X.  x
)  =  ( C  X.  C ) )
6361, 62sseq12d 3634 . . . . . . . . . . . 12  |-  ( ( x  =  C  /\  r  =  ( ( W `  B )  i^i  ( C  X.  C
) ) )  -> 
( r  C_  (
x  X.  x )  <-> 
( ( W `  B )  i^i  ( C  X.  C ) ) 
C_  ( C  X.  C ) ) )
64 weeq2 5103 . . . . . . . . . . . . 13  |-  ( x  =  C  ->  (
r  We  x  <->  r  We  C ) )
65 weeq1 5102 . . . . . . . . . . . . 13  |-  ( r  =  ( ( W `
 B )  i^i  ( C  X.  C
) )  ->  (
r  We  C  <->  ( ( W `  B )  i^i  ( C  X.  C
) )  We  C
) )
6664, 65sylan9bb 736 . . . . . . . . . . . 12  |-  ( ( x  =  C  /\  r  =  ( ( W `  B )  i^i  ( C  X.  C
) ) )  -> 
( r  We  x  <->  ( ( W `  B
)  i^i  ( C  X.  C ) )  We  C ) )
6760, 63, 663anbi123d 1399 . . . . . . . . . . 11  |-  ( ( x  =  C  /\  r  =  ( ( W `  B )  i^i  ( C  X.  C
) ) )  -> 
( ( x  C_  A  /\  r  C_  (
x  X.  x )  /\  r  We  x
)  <->  ( C  C_  A  /\  ( ( W `
 B )  i^i  ( C  X.  C
) )  C_  ( C  X.  C )  /\  ( ( W `  B )  i^i  ( C  X.  C ) )  We  C ) ) )
6857, 58, 67opelopaba 4991 . . . . . . . . . 10  |-  ( <. C ,  ( ( W `  B )  i^i  ( C  X.  C
) ) >.  e.  { <. x ,  r >.  |  ( x  C_  A  /\  r  C_  (
x  X.  x )  /\  r  We  x
) }  <->  ( C  C_  A  /\  ( ( W `  B )  i^i  ( C  X.  C ) )  C_  ( C  X.  C
)  /\  ( ( W `  B )  i^i  ( C  X.  C
) )  We  C
) )
6945, 47, 53, 68syl3anbrc 1246 . . . . . . . . 9  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  <. C ,  ( ( W `  B
)  i^i  ( C  X.  C ) ) >.  e.  { <. x ,  r
>.  |  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) } )
7069, 13syl6eleqr 2712 . . . . . . . 8  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  <. C ,  ( ( W `  B
)  i^i  ( C  X.  C ) ) >.  e.  O )
716, 44ssexd 4805 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  B  e.  _V )
7254a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  ( W `  B )  e.  _V )
73 simpl 473 . . . . . . . . . . . . . 14  |-  ( ( x  =  B  /\  r  =  ( W `  B ) )  ->  x  =  B )
7473sseq1d 3632 . . . . . . . . . . . . 13  |-  ( ( x  =  B  /\  r  =  ( W `  B ) )  -> 
( x  C_  A  <->  B 
C_  A ) )
75 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( x  =  B  /\  r  =  ( W `  B ) )  -> 
r  =  ( W `
 B ) )
7673sqxpeqd 5141 . . . . . . . . . . . . . 14  |-  ( ( x  =  B  /\  r  =  ( W `  B ) )  -> 
( x  X.  x
)  =  ( B  X.  B ) )
7775, 76sseq12d 3634 . . . . . . . . . . . . 13  |-  ( ( x  =  B  /\  r  =  ( W `  B ) )  -> 
( r  C_  (
x  X.  x )  <-> 
( W `  B
)  C_  ( B  X.  B ) ) )
78 weeq2 5103 . . . . . . . . . . . . . 14  |-  ( x  =  B  ->  (
r  We  x  <->  r  We  B ) )
79 weeq1 5102 . . . . . . . . . . . . . 14  |-  ( r  =  ( W `  B )  ->  (
r  We  B  <->  ( W `  B )  We  B
) )
8078, 79sylan9bb 736 . . . . . . . . . . . . 13  |-  ( ( x  =  B  /\  r  =  ( W `  B ) )  -> 
( r  We  x  <->  ( W `  B )  We  B ) )
8174, 77, 803anbi123d 1399 . . . . . . . . . . . 12  |-  ( ( x  =  B  /\  r  =  ( W `  B ) )  -> 
( ( x  C_  A  /\  r  C_  (
x  X.  x )  /\  r  We  x
)  <->  ( B  C_  A  /\  ( W `  B )  C_  ( B  X.  B )  /\  ( W `  B )  We  B ) ) )
8281opelopabga 4988 . . . . . . . . . . 11  |-  ( ( B  e.  _V  /\  ( W `  B )  e.  _V )  -> 
( <. B ,  ( W `  B )
>.  e.  { <. x ,  r >.  |  ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x ) }  <->  ( B  C_  A  /\  ( W `
 B )  C_  ( B  X.  B
)  /\  ( W `  B )  We  B
) ) )
8371, 72, 82syl2anc 693 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  ( <. B , 
( W `  B
) >.  e.  { <. x ,  r >.  |  ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x ) }  <->  ( B  C_  A  /\  ( W `
 B )  C_  ( B  X.  B
)  /\  ( W `  B )  We  B
) ) )
8444, 37, 49, 83mpbir3and 1245 . . . . . . . . 9  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  <. B ,  ( W `  B )
>.  e.  { <. x ,  r >.  |  ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x ) } )
8584, 13syl6eleqr 2712 . . . . . . . 8  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  <. B ,  ( W `  B )
>.  e.  O )
86 f1fveq 6519 . . . . . . . 8  |-  ( ( F : O -1-1-> A  /\  ( <. C ,  ( ( W `  B
)  i^i  ( C  X.  C ) ) >.  e.  O  /\  <. B , 
( W `  B
) >.  e.  O ) )  ->  ( ( F `  <. C , 
( ( W `  B )  i^i  ( C  X.  C ) )
>. )  =  ( F `  <. B , 
( W `  B
) >. )  <->  <. C , 
( ( W `  B )  i^i  ( C  X.  C ) )
>.  =  <. B , 
( W `  B
) >. ) )
8732, 70, 85, 86syl12anc 1324 . . . . . . 7  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  ( ( F `
 <. C ,  ( ( W `  B
)  i^i  ( C  X.  C ) ) >.
)  =  ( F `
 <. B ,  ( W `  B )
>. )  <->  <. C ,  ( ( W `  B
)  i^i  ( C  X.  C ) ) >.  =  <. B ,  ( W `  B )
>. ) )
8831, 87mpbid 222 . . . . . 6  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  <. C ,  ( ( W `  B
)  i^i  ( C  X.  C ) ) >.  =  <. B ,  ( W `  B )
>. )
8957, 58opth1 4944 . . . . . 6  |-  ( <. C ,  ( ( W `  B )  i^i  ( C  X.  C
) ) >.  =  <. B ,  ( W `  B ) >.  ->  C  =  B )
9088, 89syl 17 . . . . 5  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  C  =  B )
9120, 90eleqtrrd 2704 . . . 4  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  ( B F ( W `  B
) )  e.  C
)
9291, 21syl6eleq 2711 . . 3  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  ( B F ( W `  B
) )  e.  ( `' ( W `  B ) " {
( B F ( W `  B ) ) } ) )
93 ovex 6678 . . . . 5  |-  ( B F ( W `  B ) )  e. 
_V
9493eliniseg 5494 . . . 4  |-  ( ( B F ( W `
 B ) )  e.  B  ->  (
( B F ( W `  B ) )  e.  ( `' ( W `  B
) " { ( B F ( W `
 B ) ) } )  <->  ( B F ( W `  B ) ) ( W `  B ) ( B F ( W `  B ) ) ) )
9520, 94syl 17 . . 3  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  ( ( B F ( W `  B ) )  e.  ( `' ( W `
 B ) " { ( B F ( W `  B
) ) } )  <-> 
( B F ( W `  B ) ) ( W `  B ) ( B F ( W `  B ) ) ) )
9692, 95mpbid 222 . 2  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  ( B F ( W `  B
) ) ( W `
 B ) ( B F ( W `
 B ) ) )
97 weso 5105 . . . 4  |-  ( ( W `  B )  We  B  ->  ( W `  B )  Or  B )
9849, 97syl 17 . . 3  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  ( W `  B )  Or  B
)
99 sonr 5056 . . 3  |-  ( ( ( W `  B
)  Or  B  /\  ( B F ( W `
 B ) )  e.  B )  ->  -.  ( B F ( W `  B ) ) ( W `  B ) ( B F ( W `  B ) ) )
10098, 20, 99syl2anc 693 . 2  |-  ( ( A  e.  V  /\  F : O -1-1-> A )  ->  -.  ( B F ( W `  B ) ) ( W `  B ) ( B F ( W `  B ) ) )
10196, 100pm2.65da 600 1  |-  ( A  e.  V  ->  -.  F : O -1-1-> A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   [.wsbc 3435    i^i cin 3573    C_ wss 3574   {csn 4177   <.cop 4183   U.cuni 4436   class class class wbr 4653   {copab 4712    Or wor 5034    We wwe 5072    X. cxp 5112   `'ccnv 5113   dom cdm 5114   "cima 5117   -->wf 5884   -1-1->wf1 5885   ` cfv 5888  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-wrecs 7407  df-recs 7468  df-oi 8415
This theorem is referenced by:  canthwe  9473
  Copyright terms: Public domain W3C validator