MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenlem Structured version   Visualization version   Unicode version

Theorem infxpenlem 8836
Description: Lemma for infxpen 8837. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
leweon.1  |-  L  =  { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) }
r0weon.1  |-  R  =  { <. z ,  w >.  |  ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  (
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) }
infxpen.1  |-  Q  =  ( R  i^i  (
( a  X.  a
)  X.  ( a  X.  a ) ) )
infxpen.2  |-  ( ph  <->  ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) ) )
infxpen.3  |-  M  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) )
infxpen.4  |-  J  = OrdIso
( Q ,  ( a  X.  a ) )
Assertion
Ref Expression
infxpenlem  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A  X.  A )  ~~  A )
Distinct variable groups:    A, a    w, J    z, w, L   
z, m, M    ph, w, z    z, Q    m, a, w, x, y, z
Allowed substitution hints:    ph( x, y, m, a)    A( x, y, z, w, m)    Q( x, y, w, m, a)    R( x, y, z, w, m, a)    J( x, y, z, m, a)    L( x, y, m, a)    M( x, y, w, a)

Proof of Theorem infxpenlem
StepHypRef Expression
1 sseq2 3627 . . . 4  |-  ( a  =  m  ->  ( om  C_  a  <->  om  C_  m
) )
2 xpeq12 5134 . . . . . 6  |-  ( ( a  =  m  /\  a  =  m )  ->  ( a  X.  a
)  =  ( m  X.  m ) )
32anidms 677 . . . . 5  |-  ( a  =  m  ->  (
a  X.  a )  =  ( m  X.  m ) )
4 id 22 . . . . 5  |-  ( a  =  m  ->  a  =  m )
53, 4breq12d 4666 . . . 4  |-  ( a  =  m  ->  (
( a  X.  a
)  ~~  a  <->  ( m  X.  m )  ~~  m
) )
61, 5imbi12d 334 . . 3  |-  ( a  =  m  ->  (
( om  C_  a  ->  ( a  X.  a
)  ~~  a )  <->  ( om  C_  m  ->  ( m  X.  m ) 
~~  m ) ) )
7 sseq2 3627 . . . 4  |-  ( a  =  A  ->  ( om  C_  a  <->  om  C_  A
) )
8 xpeq12 5134 . . . . . 6  |-  ( ( a  =  A  /\  a  =  A )  ->  ( a  X.  a
)  =  ( A  X.  A ) )
98anidms 677 . . . . 5  |-  ( a  =  A  ->  (
a  X.  a )  =  ( A  X.  A ) )
10 id 22 . . . . 5  |-  ( a  =  A  ->  a  =  A )
119, 10breq12d 4666 . . . 4  |-  ( a  =  A  ->  (
( a  X.  a
)  ~~  a  <->  ( A  X.  A )  ~~  A
) )
127, 11imbi12d 334 . . 3  |-  ( a  =  A  ->  (
( om  C_  a  ->  ( a  X.  a
)  ~~  a )  <->  ( om  C_  A  ->  ( A  X.  A ) 
~~  A ) ) )
13 infxpen.2 . . . . . . . 8  |-  ( ph  <->  ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) ) )
14 vex 3203 . . . . . . . . . . . . 13  |-  a  e. 
_V
1514, 14xpex 6962 . . . . . . . . . . . 12  |-  ( a  X.  a )  e. 
_V
16 simpll 790 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) )  ->  a  e.  On )
1713, 16sylbi 207 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  a  e.  On )
18 onss 6990 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  On  ->  a  C_  On )
1917, 18syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  a  C_  On )
20 xpss12 5225 . . . . . . . . . . . . . . . 16  |-  ( ( a  C_  On  /\  a  C_  On )  ->  (
a  X.  a ) 
C_  ( On  X.  On ) )
2119, 19, 20syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( a  X.  a
)  C_  ( On  X.  On ) )
22 leweon.1 . . . . . . . . . . . . . . . . 17  |-  L  =  { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) }
23 r0weon.1 . . . . . . . . . . . . . . . . 17  |-  R  =  { <. z ,  w >.  |  ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  (
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) }
2422, 23r0weon 8835 . . . . . . . . . . . . . . . 16  |-  ( R  We  ( On  X.  On )  /\  R Se  ( On  X.  On ) )
2524simpli 474 . . . . . . . . . . . . . . 15  |-  R  We  ( On  X.  On )
26 wess 5101 . . . . . . . . . . . . . . 15  |-  ( ( a  X.  a ) 
C_  ( On  X.  On )  ->  ( R  We  ( On  X.  On )  ->  R  We  ( a  X.  a
) ) )
2721, 25, 26mpisyl 21 . . . . . . . . . . . . . 14  |-  ( ph  ->  R  We  ( a  X.  a ) )
28 weinxp 5186 . . . . . . . . . . . . . 14  |-  ( R  We  ( a  X.  a )  <->  ( R  i^i  ( ( a  X.  a )  X.  (
a  X.  a ) ) )  We  (
a  X.  a ) )
2927, 28sylib 208 . . . . . . . . . . . . 13  |-  ( ph  ->  ( R  i^i  (
( a  X.  a
)  X.  ( a  X.  a ) ) )  We  ( a  X.  a ) )
30 infxpen.1 . . . . . . . . . . . . . 14  |-  Q  =  ( R  i^i  (
( a  X.  a
)  X.  ( a  X.  a ) ) )
31 weeq1 5102 . . . . . . . . . . . . . 14  |-  ( Q  =  ( R  i^i  ( ( a  X.  a )  X.  (
a  X.  a ) ) )  ->  ( Q  We  ( a  X.  a )  <->  ( R  i^i  ( ( a  X.  a )  X.  (
a  X.  a ) ) )  We  (
a  X.  a ) ) )
3230, 31ax-mp 5 . . . . . . . . . . . . 13  |-  ( Q  We  ( a  X.  a )  <->  ( R  i^i  ( ( a  X.  a )  X.  (
a  X.  a ) ) )  We  (
a  X.  a ) )
3329, 32sylibr 224 . . . . . . . . . . . 12  |-  ( ph  ->  Q  We  ( a  X.  a ) )
34 infxpen.4 . . . . . . . . . . . . 13  |-  J  = OrdIso
( Q ,  ( a  X.  a ) )
3534oiiso 8442 . . . . . . . . . . . 12  |-  ( ( ( a  X.  a
)  e.  _V  /\  Q  We  ( a  X.  a ) )  ->  J  Isom  _E  ,  Q  ( dom  J ,  ( a  X.  a ) ) )
3615, 33, 35sylancr 695 . . . . . . . . . . 11  |-  ( ph  ->  J  Isom  _E  ,  Q  ( dom  J ,  ( a  X.  a ) ) )
37 isof1o 6573 . . . . . . . . . . 11  |-  ( J 
Isom  _E  ,  Q  ( dom  J ,  ( a  X.  a ) )  ->  J : dom  J -1-1-onto-> ( a  X.  a
) )
38 f1ocnv 6149 . . . . . . . . . . 11  |-  ( J : dom  J -1-1-onto-> ( a  X.  a )  ->  `' J : ( a  X.  a ) -1-1-onto-> dom  J
)
39 f1of1 6136 . . . . . . . . . . 11  |-  ( `' J : ( a  X.  a ) -1-1-onto-> dom  J  ->  `' J : ( a  X.  a ) -1-1-> dom  J )
4036, 37, 38, 394syl 19 . . . . . . . . . 10  |-  ( ph  ->  `' J : ( a  X.  a ) -1-1-> dom  J )
41 f1f1orn 6148 . . . . . . . . . 10  |-  ( `' J : ( a  X.  a ) -1-1-> dom  J  ->  `' J :
( a  X.  a
)
-1-1-onto-> ran  `' J )
4215f1oen 7976 . . . . . . . . . 10  |-  ( `' J : ( a  X.  a ) -1-1-onto-> ran  `' J  ->  ( a  X.  a )  ~~  ran  `' J )
4340, 41, 423syl 18 . . . . . . . . 9  |-  ( ph  ->  ( a  X.  a
)  ~~  ran  `' J
)
44 f1ofn 6138 . . . . . . . . . . 11  |-  ( `' J : ( a  X.  a ) -1-1-onto-> dom  J  ->  `' J  Fn  (
a  X.  a ) )
4536, 37, 38, 444syl 19 . . . . . . . . . 10  |-  ( ph  ->  `' J  Fn  (
a  X.  a ) )
4636adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  J  Isom  _E  ,  Q  ( dom  J ,  ( a  X.  a ) ) )
4737, 38, 393syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( J 
Isom  _E  ,  Q  ( dom  J ,  ( a  X.  a ) )  ->  `' J : ( a  X.  a ) -1-1-> dom  J
)
48 cnvimass 5485 . . . . . . . . . . . . . . . . . . 19  |-  ( `' Q " { w } )  C_  dom  Q
49 inss2 3834 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R  i^i  ( ( a  X.  a )  X.  ( a  X.  a
) ) )  C_  ( ( a  X.  a )  X.  (
a  X.  a ) )
5030, 49eqsstri 3635 . . . . . . . . . . . . . . . . . . . . 21  |-  Q  C_  ( ( a  X.  a )  X.  (
a  X.  a ) )
51 dmss 5323 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Q 
C_  ( ( a  X.  a )  X.  ( a  X.  a
) )  ->  dom  Q 
C_  dom  ( (
a  X.  a )  X.  ( a  X.  a ) ) )
5250, 51ax-mp 5 . . . . . . . . . . . . . . . . . . . 20  |-  dom  Q  C_ 
dom  ( ( a  X.  a )  X.  ( a  X.  a
) )
53 dmxpid 5345 . . . . . . . . . . . . . . . . . . . 20  |-  dom  (
( a  X.  a
)  X.  ( a  X.  a ) )  =  ( a  X.  a )
5452, 53sseqtri 3637 . . . . . . . . . . . . . . . . . . 19  |-  dom  Q  C_  ( a  X.  a
)
5548, 54sstri 3612 . . . . . . . . . . . . . . . . . 18  |-  ( `' Q " { w } )  C_  (
a  X.  a )
56 f1ores 6151 . . . . . . . . . . . . . . . . . 18  |-  ( ( `' J : ( a  X.  a ) -1-1-> dom  J  /\  ( `' Q " { w } ) 
C_  ( a  X.  a ) )  -> 
( `' J  |`  ( `' Q " { w } ) ) : ( `' Q " { w } ) -1-1-onto-> ( `' J " ( `' Q " { w } ) ) )
5747, 55, 56sylancl 694 . . . . . . . . . . . . . . . . 17  |-  ( J 
Isom  _E  ,  Q  ( dom  J ,  ( a  X.  a ) )  ->  ( `' J  |`  ( `' Q " { w } ) ) : ( `' Q " { w } ) -1-1-onto-> ( `' J "
( `' Q " { w } ) ) )
5815, 15xpex 6962 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  X.  a )  X.  ( a  X.  a ) )  e. 
_V
5958inex2 4800 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  i^i  ( ( a  X.  a )  X.  ( a  X.  a
) ) )  e. 
_V
6030, 59eqeltri 2697 . . . . . . . . . . . . . . . . . . . 20  |-  Q  e. 
_V
6160cnvex 7113 . . . . . . . . . . . . . . . . . . 19  |-  `' Q  e.  _V
6261imaex 7104 . . . . . . . . . . . . . . . . . 18  |-  ( `' Q " { w } )  e.  _V
6362f1oen 7976 . . . . . . . . . . . . . . . . 17  |-  ( ( `' J  |`  ( `' Q " { w } ) ) : ( `' Q " { w } ) -1-1-onto-> ( `' J " ( `' Q " { w } ) )  -> 
( `' Q " { w } ) 
~~  ( `' J " ( `' Q " { w } ) ) )
6446, 57, 633syl 18 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' Q " { w } )  ~~  ( `' J " ( `' Q " { w } ) ) )
65 sseqin2 3817 . . . . . . . . . . . . . . . . . . 19  |-  ( ( `' Q " { w } )  C_  (
a  X.  a )  <-> 
( ( a  X.  a )  i^i  ( `' Q " { w } ) )  =  ( `' Q " { w } ) )
6655, 65mpbi 220 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  X.  a )  i^i  ( `' Q " { w } ) )  =  ( `' Q " { w } )
6766imaeq2i 5464 . . . . . . . . . . . . . . . . 17  |-  ( `' J " ( ( a  X.  a )  i^i  ( `' Q " { w } ) ) )  =  ( `' J " ( `' Q " { w } ) )
68 isocnv 6580 . . . . . . . . . . . . . . . . . . . 20  |-  ( J 
Isom  _E  ,  Q  ( dom  J ,  ( a  X.  a ) )  ->  `' J  Isom  Q ,  _E  (
( a  X.  a
) ,  dom  J
) )
6946, 68syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  `' J  Isom  Q ,  _E  ( ( a  X.  a ) ,  dom  J ) )
70 simpr 477 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  w  e.  ( a  X.  a
) )
71 isoini 6588 . . . . . . . . . . . . . . . . . . 19  |-  ( ( `' J  Isom  Q ,  _E  ( ( a  X.  a ) ,  dom  J )  /\  w  e.  ( a  X.  a
) )  ->  ( `' J " ( ( a  X.  a )  i^i  ( `' Q " { w } ) ) )  =  ( dom  J  i^i  ( `'  _E  " { ( `' J `  w ) } ) ) )
7269, 70, 71syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J " ( ( a  X.  a )  i^i  ( `' Q " { w } ) ) )  =  ( dom  J  i^i  ( `'  _E  " { ( `' J `  w ) } ) ) )
73 fvex 6201 . . . . . . . . . . . . . . . . . . . . 21  |-  ( `' J `  w )  e.  _V
7473epini 5495 . . . . . . . . . . . . . . . . . . . 20  |-  ( `'  _E  " { ( `' J `  w ) } )  =  ( `' J `  w )
7574ineq2i 3811 . . . . . . . . . . . . . . . . . . 19  |-  ( dom 
J  i^i  ( `'  _E  " { ( `' J `  w ) } ) )  =  ( dom  J  i^i  ( `' J `  w ) )
7634oicl 8434 . . . . . . . . . . . . . . . . . . . . 21  |-  Ord  dom  J
77 f1of 6137 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( `' J : ( a  X.  a ) -1-1-onto-> dom  J  ->  `' J : ( a  X.  a ) --> dom 
J )
7836, 37, 38, 774syl 19 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  `' J : ( a  X.  a ) --> dom 
J )
7978ffvelrnda 6359 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J `  w )  e.  dom  J )
80 ordelss 5739 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( Ord  dom  J  /\  ( `' J `  w )  e.  dom  J )  ->  ( `' J `  w )  C_  dom  J )
8176, 79, 80sylancr 695 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J `  w ) 
C_  dom  J )
82 sseqin2 3817 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( `' J `  w ) 
C_  dom  J  <->  ( dom  J  i^i  ( `' J `  w ) )  =  ( `' J `  w ) )
8381, 82sylib 208 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( dom  J  i^i  ( `' J `  w ) )  =  ( `' J `  w ) )
8475, 83syl5eq 2668 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( dom  J  i^i  ( `'  _E  " { ( `' J `  w ) } ) )  =  ( `' J `  w ) )
8572, 84eqtrd 2656 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J " ( ( a  X.  a )  i^i  ( `' Q " { w } ) ) )  =  ( `' J `  w ) )
8667, 85syl5eqr 2670 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J " ( `' Q " { w } ) )  =  ( `' J `  w ) )
8764, 86breqtrd 4679 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' Q " { w } )  ~~  ( `' J `  w ) )
8887ensymd 8007 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J `  w ) 
~~  ( `' Q " { w } ) )
89 infxpen.3 . . . . . . . . . . . . . . . . . . 19  |-  M  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) )
90 fvex 6201 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1st `  w )  e.  _V
91 fvex 6201 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2nd `  w )  e.  _V
9290, 91unex 6956 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1st `  w )  u.  ( 2nd `  w
) )  e.  _V
9389, 92eqeltri 2697 . . . . . . . . . . . . . . . . . 18  |-  M  e. 
_V
9493sucex 7011 . . . . . . . . . . . . . . . . 17  |-  suc  M  e.  _V
9594, 94xpex 6962 . . . . . . . . . . . . . . . 16  |-  ( suc 
M  X.  suc  M
)  e.  _V
96 xpss 5226 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  X.  a )  C_  ( _V  X.  _V )
97 simp3 1063 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
z  e.  ( `' Q " { w } ) )
98 vex 3203 . . . . . . . . . . . . . . . . . . . . . . 23  |-  w  e. 
_V
99 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  z  e. 
_V
10099eliniseg 5494 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  _V  ->  (
z  e.  ( `' Q " { w } )  <->  z Q w ) )
10198, 100ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  ( `' Q " { w } )  <-> 
z Q w )
10297, 101sylib 208 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
z Q w )
10330breqi 4659 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z Q w  <->  z ( R  i^i  ( ( a  X.  a )  X.  ( a  X.  a
) ) ) w )
104 brin 4704 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z ( R  i^i  (
( a  X.  a
)  X.  ( a  X.  a ) ) ) w  <->  ( z R w  /\  z
( ( a  X.  a )  X.  (
a  X.  a ) ) w ) )
105103, 104bitri 264 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z Q w  <->  ( z R w  /\  z
( ( a  X.  a )  X.  (
a  X.  a ) ) w ) )
106105simprbi 480 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z Q w  ->  z
( ( a  X.  a )  X.  (
a  X.  a ) ) w )
107 brxp 5147 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z ( ( a  X.  a )  X.  (
a  X.  a ) ) w  <->  ( z  e.  ( a  X.  a
)  /\  w  e.  ( a  X.  a
) ) )
108107simplbi 476 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z ( ( a  X.  a )  X.  (
a  X.  a ) ) w  ->  z  e.  ( a  X.  a
) )
109102, 106, 1083syl 18 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
z  e.  ( a  X.  a ) )
11096, 109sseldi 3601 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
z  e.  ( _V 
X.  _V ) )
11117adantr 481 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  a  e.  On )
1121113adant3 1081 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
a  e.  On )
113 xp1st 7198 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  ( a  X.  a )  ->  ( 1st `  z )  e.  a )
114 onelon 5748 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  e.  On  /\  ( 1st `  z )  e.  a )  -> 
( 1st `  z
)  e.  On )
115113, 114sylan2 491 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a  e.  On  /\  z  e.  ( a  X.  a ) )  -> 
( 1st `  z
)  e.  On )
116112, 109, 115syl2anc 693 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
( 1st `  z
)  e.  On )
117 eloni 5733 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( a  e.  On  ->  Ord  a )
118 elxp7 7201 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( w  e.  ( a  X.  a )  <->  ( w  e.  ( _V  X.  _V )  /\  ( ( 1st `  w )  e.  a  /\  ( 2nd `  w
)  e.  a ) ) )
119118simprbi 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( w  e.  ( a  X.  a )  ->  (
( 1st `  w
)  e.  a  /\  ( 2nd `  w )  e.  a ) )
120 ordunel 7027 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( Ord  a  /\  ( 1st `  w )  e.  a  /\  ( 2nd `  w )  e.  a )  ->  ( ( 1st `  w )  u.  ( 2nd `  w
) )  e.  a )
1211203expib 1268 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( Ord  a  ->  ( (
( 1st `  w
)  e.  a  /\  ( 2nd `  w )  e.  a )  -> 
( ( 1st `  w
)  u.  ( 2nd `  w ) )  e.  a ) )
122117, 119, 121syl2im 40 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( a  e.  On  ->  (
w  e.  ( a  X.  a )  -> 
( ( 1st `  w
)  u.  ( 2nd `  w ) )  e.  a ) )
123111, 70, 122sylc 65 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  (
( 1st `  w
)  u.  ( 2nd `  w ) )  e.  a )
12489, 123syl5eqel 2705 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  M  e.  a )
125 simprr 796 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) )  ->  A. m  e.  a  m  ~<  a )
12613, 125sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  A. m  e.  a  m  ~<  a )
127 simprl 794 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) )  ->  om  C_  a
)
12813, 127sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  om  C_  a )
129 iscard 8801 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
card `  a )  =  a  <->  ( a  e.  On  /\  A. m  e.  a  m  ~<  a ) )
130 cardlim 8798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( om  C_  ( card `  a
)  <->  Lim  ( card `  a
) )
131 sseq2 3627 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
card `  a )  =  a  ->  ( om  C_  ( card `  a
)  <->  om  C_  a )
)
132 limeq 5735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
card `  a )  =  a  ->  ( Lim  ( card `  a
)  <->  Lim  a ) )
133131, 132bibi12d 335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
card `  a )  =  a  ->  ( ( om  C_  ( card `  a )  <->  Lim  ( card `  a ) )  <->  ( om  C_  a  <->  Lim  a ) ) )
134130, 133mpbii 223 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
card `  a )  =  a  ->  ( om  C_  a  <->  Lim  a ) )
135129, 134sylbir 225 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( a  e.  On  /\  A. m  e.  a  m 
~<  a )  ->  ( om  C_  a  <->  Lim  a ) )
136135biimpa 501 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  m  ~<  a )  /\  om  C_  a )  ->  Lim  a )
13717, 126, 128, 136syl21anc 1325 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  Lim  a )
138137adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  Lim  a )
139 limsuc 7049 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( Lim  a  ->  ( M  e.  a  <->  suc  M  e.  a ) )
140138, 139syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( M  e.  a  <->  suc  M  e.  a ) )
141124, 140mpbid 222 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  suc  M  e.  a )
142 onelon 5748 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  e.  On  /\  suc  M  e.  a )  ->  suc  M  e.  On )
14317, 141, 142syl2an2r 876 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  suc  M  e.  On )
1441433adant3 1081 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  ->  suc  M  e.  On )
145 ssun1 3776 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1st `  z )  C_  (
( 1st `  z
)  u.  ( 2nd `  z ) )
146145a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
( 1st `  z
)  C_  ( ( 1st `  z )  u.  ( 2nd `  z
) ) )
147105simplbi 476 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z Q w  ->  z R w )
148 df-br 4654 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z R w  <->  <. z ,  w >.  e.  R
)
14923eleq2i 2693 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( <.
z ,  w >.  e.  R  <->  <. z ,  w >.  e.  { <. z ,  w >.  |  (
( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  ( ( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) } )
150 opabid 4982 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( <.
z ,  w >.  e. 
{ <. z ,  w >.  |  ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  (
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) }  <-> 
( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  ( ( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) )
151148, 149, 1503bitri 286 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z R w  <->  ( (
z  e.  ( On 
X.  On )  /\  w  e.  ( On  X.  On ) )  /\  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w )  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z
) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  /\  z L w ) ) ) )
152151simprbi 480 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( z R w  ->  (
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) )
153 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( 1st `  z
)  u.  ( 2nd `  z ) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  /\  z L w )  -> 
( ( 1st `  z
)  u.  ( 2nd `  z ) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) )
154153orim2i 540 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) )  ->  (
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( 1st `  z
)  u.  ( 2nd `  z ) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) ) )
155152, 154syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z R w  ->  (
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( 1st `  z
)  u.  ( 2nd `  z ) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) ) )
156 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 1st `  z )  e.  _V
157 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 2nd `  z )  e.  _V
158156, 157unex 6956 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 1st `  z )  u.  ( 2nd `  z
) )  e.  _V
159158elsuc 5794 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( 1st `  z
)  u.  ( 2nd `  z ) )  e. 
suc  ( ( 1st `  w )  u.  ( 2nd `  w ) )  <-> 
( ( ( 1st `  z )  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w )  u.  ( 2nd `  w ) )  \/  ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) ) ) )
160155, 159sylibr 224 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z R w  ->  (
( 1st `  z
)  u.  ( 2nd `  z ) )  e. 
suc  ( ( 1st `  w )  u.  ( 2nd `  w ) ) )
161 suceq 5790 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( M  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  ->  suc  M  =  suc  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) )
16289, 161ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22  |-  suc  M  =  suc  ( ( 1st `  w )  u.  ( 2nd `  w ) )
163160, 162syl6eleqr 2712 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z R w  ->  (
( 1st `  z
)  u.  ( 2nd `  z ) )  e. 
suc  M )
164102, 147, 1633syl 18 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e. 
suc  M )
165 ontr2 5772 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 1st `  z
)  e.  On  /\  suc  M  e.  On )  ->  ( ( ( 1st `  z ) 
C_  ( ( 1st `  z )  u.  ( 2nd `  z ) )  /\  ( ( 1st `  z )  u.  ( 2nd `  z ) )  e.  suc  M )  ->  ( 1st `  z
)  e.  suc  M
) )
166165imp 445 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( 1st `  z
)  e.  On  /\  suc  M  e.  On )  /\  ( ( 1st `  z )  C_  (
( 1st `  z
)  u.  ( 2nd `  z ) )  /\  ( ( 1st `  z
)  u.  ( 2nd `  z ) )  e. 
suc  M ) )  ->  ( 1st `  z
)  e.  suc  M
)
167116, 144, 146, 164, 166syl22anc 1327 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
( 1st `  z
)  e.  suc  M
)
168 xp2nd 7199 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  ( a  X.  a )  ->  ( 2nd `  z )  e.  a )
169 onelon 5748 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  e.  On  /\  ( 2nd `  z )  e.  a )  -> 
( 2nd `  z
)  e.  On )
170168, 169sylan2 491 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a  e.  On  /\  z  e.  ( a  X.  a ) )  -> 
( 2nd `  z
)  e.  On )
171112, 109, 170syl2anc 693 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
( 2nd `  z
)  e.  On )
172 ssun2 3777 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 2nd `  z )  C_  (
( 1st `  z
)  u.  ( 2nd `  z ) )
173172a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
( 2nd `  z
)  C_  ( ( 1st `  z )  u.  ( 2nd `  z
) ) )
174 ontr2 5772 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 2nd `  z
)  e.  On  /\  suc  M  e.  On )  ->  ( ( ( 2nd `  z ) 
C_  ( ( 1st `  z )  u.  ( 2nd `  z ) )  /\  ( ( 1st `  z )  u.  ( 2nd `  z ) )  e.  suc  M )  ->  ( 2nd `  z
)  e.  suc  M
) )
175174imp 445 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( 2nd `  z
)  e.  On  /\  suc  M  e.  On )  /\  ( ( 2nd `  z )  C_  (
( 1st `  z
)  u.  ( 2nd `  z ) )  /\  ( ( 1st `  z
)  u.  ( 2nd `  z ) )  e. 
suc  M ) )  ->  ( 2nd `  z
)  e.  suc  M
)
176171, 144, 173, 164, 175syl22anc 1327 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
( 2nd `  z
)  e.  suc  M
)
177 elxp7 7201 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  ( suc  M  X.  suc  M )  <->  ( z  e.  ( _V  X.  _V )  /\  ( ( 1st `  z )  e.  suc  M  /\  ( 2nd `  z
)  e.  suc  M
) ) )
178177biimpri 218 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  ( _V 
X.  _V )  /\  (
( 1st `  z
)  e.  suc  M  /\  ( 2nd `  z
)  e.  suc  M
) )  ->  z  e.  ( suc  M  X.  suc  M ) )
179110, 167, 176, 178syl12anc 1324 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
z  e.  ( suc 
M  X.  suc  M
) )
1801793expia 1267 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  (
z  e.  ( `' Q " { w } )  ->  z  e.  ( suc  M  X.  suc  M ) ) )
181180ssrdv 3609 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' Q " { w } )  C_  ( suc  M  X.  suc  M
) )
182 ssdomg 8001 . . . . . . . . . . . . . . . 16  |-  ( ( suc  M  X.  suc  M )  e.  _V  ->  ( ( `' Q " { w } ) 
C_  ( suc  M  X.  suc  M )  -> 
( `' Q " { w } )  ~<_  ( suc  M  X.  suc  M ) ) )
18395, 181, 182mpsyl 68 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' Q " { w } )  ~<_  ( suc 
M  X.  suc  M
) )
184128adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  om  C_  a
)
185 nnfi 8153 . . . . . . . . . . . . . . . . . . . 20  |-  ( suc 
M  e.  om  ->  suc 
M  e.  Fin )
186 xpfi 8231 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( suc  M  e.  Fin  /\ 
suc  M  e.  Fin )  ->  ( suc  M  X.  suc  M )  e. 
Fin )
187186anidms 677 . . . . . . . . . . . . . . . . . . . . 21  |-  ( suc 
M  e.  Fin  ->  ( suc  M  X.  suc  M )  e.  Fin )
188 isfinite 8549 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( suc  M  X.  suc  M )  e.  Fin  <->  ( suc  M  X.  suc  M ) 
~<  om )
189187, 188sylib 208 . . . . . . . . . . . . . . . . . . . 20  |-  ( suc 
M  e.  Fin  ->  ( suc  M  X.  suc  M )  ~<  om )
190185, 189syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( suc 
M  e.  om  ->  ( suc  M  X.  suc  M )  ~<  om )
191 ssdomg 8001 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  e.  _V  ->  ( om  C_  a  ->  om  ~<_  a ) )
19214, 191ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( om  C_  a  ->  om  ~<_  a )
193 sdomdomtr 8093 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( suc  M  X.  suc  M )  ~<  om  /\  om  ~<_  a )  ->  ( suc  M  X.  suc  M
)  ~<  a )
194190, 192, 193syl2an 494 . . . . . . . . . . . . . . . . . 18  |-  ( ( suc  M  e.  om  /\ 
om  C_  a )  -> 
( suc  M  X.  suc  M )  ~<  a
)
195194expcom 451 . . . . . . . . . . . . . . . . 17  |-  ( om  C_  a  ->  ( suc 
M  e.  om  ->  ( suc  M  X.  suc  M )  ~<  a )
)
196184, 195syl 17 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( suc  M  e.  om  ->  ( suc  M  X.  suc  M )  ~<  a )
)
197126adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  A. m  e.  a  m  ~<  a )
198 breq1 4656 . . . . . . . . . . . . . . . . . . 19  |-  ( m  =  suc  M  -> 
( m  ~<  a  <->  suc 
M  ~<  a ) )
199198rspccv 3306 . . . . . . . . . . . . . . . . . 18  |-  ( A. m  e.  a  m  ~<  a  ->  ( suc  M  e.  a  ->  suc  M 
~<  a ) )
200197, 141, 199sylc 65 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  suc  M 
~<  a )
201 omelon 8543 . . . . . . . . . . . . . . . . . . 19  |-  om  e.  On
202 ontri1 5757 . . . . . . . . . . . . . . . . . . 19  |-  ( ( om  e.  On  /\  suc  M  e.  On )  ->  ( om  C_  suc  M  <->  -.  suc  M  e.  om ) )
203201, 143, 202sylancr 695 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( om  C_  suc  M  <->  -.  suc  M  e.  om ) )
204 simplr 792 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) )  ->  A. m  e.  a  ( om  C_  m  ->  ( m  X.  m )  ~~  m
) )
20513, 204sylbi 207 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)
206205adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  A. m  e.  a  ( om  C_  m  ->  ( m  X.  m )  ~~  m
) )
207 sseq2 3627 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  suc  M  -> 
( om  C_  m  <->  om  C_  suc  M ) )
208 xpeq12 5134 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( m  =  suc  M  /\  m  =  suc  M )  ->  ( m  X.  m )  =  ( suc  M  X.  suc  M ) )
209208anidms 677 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  =  suc  M  -> 
( m  X.  m
)  =  ( suc 
M  X.  suc  M
) )
210 id 22 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  =  suc  M  ->  m  =  suc  M )
211209, 210breq12d 4666 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  suc  M  -> 
( ( m  X.  m )  ~~  m  <->  ( suc  M  X.  suc  M )  ~~  suc  M
) )
212207, 211imbi12d 334 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  =  suc  M  -> 
( ( om  C_  m  ->  ( m  X.  m
)  ~~  m )  <->  ( om  C_  suc  M  -> 
( suc  M  X.  suc  M )  ~~  suc  M ) ) )
213212rspccv 3306 . . . . . . . . . . . . . . . . . . 19  |-  ( A. m  e.  a  ( om  C_  m  ->  (
m  X.  m ) 
~~  m )  -> 
( suc  M  e.  a  ->  ( om  C_  suc  M  ->  ( suc  M  X.  suc  M )  ~~  suc  M ) ) )
214206, 141, 213sylc 65 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( om  C_  suc  M  -> 
( suc  M  X.  suc  M )  ~~  suc  M ) )
215203, 214sylbird 250 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( -.  suc  M  e.  om  ->  ( suc  M  X.  suc  M )  ~~  suc  M ) )
216 ensdomtr 8096 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( suc  M  X.  suc  M )  ~~  suc  M  /\  suc  M  ~<  a )  ->  ( suc  M  X.  suc  M ) 
~<  a )
217216expcom 451 . . . . . . . . . . . . . . . . 17  |-  ( suc 
M  ~<  a  ->  (
( suc  M  X.  suc  M )  ~~  suc  M  ->  ( suc  M  X.  suc  M )  ~< 
a ) )
218200, 215, 217sylsyld 61 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( -.  suc  M  e.  om  ->  ( suc  M  X.  suc  M )  ~<  a
) )
219196, 218pm2.61d 170 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( suc  M  X.  suc  M
)  ~<  a )
220 domsdomtr 8095 . . . . . . . . . . . . . . 15  |-  ( ( ( `' Q " { w } )  ~<_  ( suc  M  X.  suc  M )  /\  ( suc  M  X.  suc  M
)  ~<  a )  -> 
( `' Q " { w } ) 
~<  a )
221183, 219, 220syl2anc 693 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' Q " { w } )  ~<  a
)
222 ensdomtr 8096 . . . . . . . . . . . . . 14  |-  ( ( ( `' J `  w )  ~~  ( `' Q " { w } )  /\  ( `' Q " { w } )  ~<  a
)  ->  ( `' J `  w )  ~<  a )
22388, 221, 222syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J `  w ) 
~<  a )
224 ordelon 5747 . . . . . . . . . . . . . . 15  |-  ( ( Ord  dom  J  /\  ( `' J `  w )  e.  dom  J )  ->  ( `' J `  w )  e.  On )
22576, 79, 224sylancr 695 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J `  w )  e.  On )
226 onenon 8775 . . . . . . . . . . . . . . 15  |-  ( a  e.  On  ->  a  e.  dom  card )
227111, 226syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  a  e.  dom  card )
228 cardsdomel 8800 . . . . . . . . . . . . . 14  |-  ( ( ( `' J `  w )  e.  On  /\  a  e.  dom  card )  ->  ( ( `' J `  w ) 
~<  a  <->  ( `' J `  w )  e.  (
card `  a )
) )
229225, 227, 228syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  (
( `' J `  w )  ~<  a  <->  ( `' J `  w )  e.  ( card `  a
) ) )
230223, 229mpbid 222 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J `  w )  e.  ( card `  a
) )
231 eleq2 2690 . . . . . . . . . . . . . 14  |-  ( (
card `  a )  =  a  ->  ( ( `' J `  w )  e.  ( card `  a
)  <->  ( `' J `  w )  e.  a ) )
232129, 231sylbir 225 . . . . . . . . . . . . 13  |-  ( ( a  e.  On  /\  A. m  e.  a  m 
~<  a )  ->  (
( `' J `  w )  e.  (
card `  a )  <->  ( `' J `  w )  e.  a ) )
23317, 197, 232syl2an2r 876 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  (
( `' J `  w )  e.  (
card `  a )  <->  ( `' J `  w )  e.  a ) )
234230, 233mpbid 222 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J `  w )  e.  a )
235234ralrimiva 2966 . . . . . . . . . 10  |-  ( ph  ->  A. w  e.  ( a  X.  a ) ( `' J `  w )  e.  a )
236 fnfvrnss 6390 . . . . . . . . . . 11  |-  ( ( `' J  Fn  (
a  X.  a )  /\  A. w  e.  ( a  X.  a
) ( `' J `  w )  e.  a )  ->  ran  `' J  C_  a )
237 ssdomg 8001 . . . . . . . . . . 11  |-  ( a  e.  _V  ->  ( ran  `' J  C_  a  ->  ran  `' J  ~<_  a )
)
23814, 236, 237mpsyl 68 . . . . . . . . . 10  |-  ( ( `' J  Fn  (
a  X.  a )  /\  A. w  e.  ( a  X.  a
) ( `' J `  w )  e.  a )  ->  ran  `' J  ~<_  a )
23945, 235, 238syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ran  `' J  ~<_  a )
240 endomtr 8014 . . . . . . . . 9  |-  ( ( ( a  X.  a
)  ~~  ran  `' J  /\  ran  `' J  ~<_  a )  ->  ( a  X.  a )  ~<_  a )
24143, 239, 240syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( a  X.  a
)  ~<_  a )
24213, 241sylbir 225 . . . . . . 7  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) )  ->  (
a  X.  a )  ~<_  a )
243 df1o2 7572 . . . . . . . . . . . 12  |-  1o  =  { (/) }
244 1onn 7719 . . . . . . . . . . . 12  |-  1o  e.  om
245243, 244eqeltrri 2698 . . . . . . . . . . 11  |-  { (/) }  e.  om
246 nnsdom 8551 . . . . . . . . . . 11  |-  ( {
(/) }  e.  om  ->  { (/) }  ~<  om )
247 sdomdom 7983 . . . . . . . . . . 11  |-  ( {
(/) }  ~<  om  ->  {
(/) }  ~<_  om )
248245, 246, 247mp2b 10 . . . . . . . . . 10  |-  { (/) }  ~<_  om
249 domtr 8009 . . . . . . . . . 10  |-  ( ( { (/) }  ~<_  om  /\  om  ~<_  a )  ->  { (/) }  ~<_  a )
250248, 192, 249sylancr 695 . . . . . . . . 9  |-  ( om  C_  a  ->  { (/) }  ~<_  a )
251 0ex 4790 . . . . . . . . . . . 12  |-  (/)  e.  _V
25214, 251xpsnen 8044 . . . . . . . . . . 11  |-  ( a  X.  { (/) } ) 
~~  a
253252ensymi 8006 . . . . . . . . . 10  |-  a  ~~  ( a  X.  { (/)
} )
25414xpdom2 8055 . . . . . . . . . 10  |-  ( {
(/) }  ~<_  a  ->  ( a  X.  { (/) } )  ~<_  ( a  X.  a ) )
255 endomtr 8014 . . . . . . . . . 10  |-  ( ( a  ~~  ( a  X.  { (/) } )  /\  ( a  X. 
{ (/) } )  ~<_  ( a  X.  a ) )  ->  a  ~<_  ( a  X.  a ) )
256253, 254, 255sylancr 695 . . . . . . . . 9  |-  ( {
(/) }  ~<_  a  ->  a  ~<_  ( a  X.  a
) )
257250, 256syl 17 . . . . . . . 8  |-  ( om  C_  a  ->  a  ~<_  ( a  X.  a ) )
258257ad2antrl 764 . . . . . . 7  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) )  ->  a  ~<_  ( a  X.  a
) )
259 sbth 8080 . . . . . . 7  |-  ( ( ( a  X.  a
)  ~<_  a  /\  a  ~<_  ( a  X.  a
) )  ->  (
a  X.  a ) 
~~  a )
260242, 258, 259syl2anc 693 . . . . . 6  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) )  ->  (
a  X.  a ) 
~~  a )
261260expr 643 . . . . 5  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  om  C_  a
)  ->  ( A. m  e.  a  m  ~<  a  ->  ( a  X.  a )  ~~  a
) )
262 simplr 792 . . . . . . . 8  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  -.  A. m  e.  a  m  ~<  a ) )  ->  A. m  e.  a 
( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)
263 simpll 790 . . . . . . . . 9  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  -.  A. m  e.  a  m  ~<  a ) )  -> 
a  e.  On )
264 simprr 796 . . . . . . . . 9  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  -.  A. m  e.  a  m  ~<  a ) )  ->  -.  A. m  e.  a  m  ~<  a )
265 rexnal 2995 . . . . . . . . . 10  |-  ( E. m  e.  a  -.  m  ~<  a  <->  -.  A. m  e.  a  m  ~<  a )
266 onelss 5766 . . . . . . . . . . . . 13  |-  ( a  e.  On  ->  (
m  e.  a  ->  m  C_  a ) )
267 ssdomg 8001 . . . . . . . . . . . . 13  |-  ( a  e.  On  ->  (
m  C_  a  ->  m  ~<_  a ) )
268266, 267syld 47 . . . . . . . . . . . 12  |-  ( a  e.  On  ->  (
m  e.  a  ->  m  ~<_  a ) )
269 bren2 7986 . . . . . . . . . . . . 13  |-  ( m 
~~  a  <->  ( m  ~<_  a  /\  -.  m  ~<  a ) )
270269simplbi2 655 . . . . . . . . . . . 12  |-  ( m  ~<_  a  ->  ( -.  m  ~<  a  ->  m  ~~  a ) )
271268, 270syl6 35 . . . . . . . . . . 11  |-  ( a  e.  On  ->  (
m  e.  a  -> 
( -.  m  ~<  a  ->  m  ~~  a
) ) )
272271reximdvai 3015 . . . . . . . . . 10  |-  ( a  e.  On  ->  ( E. m  e.  a  -.  m  ~<  a  ->  E. m  e.  a  m  ~~  a ) )
273265, 272syl5bir 233 . . . . . . . . 9  |-  ( a  e.  On  ->  ( -.  A. m  e.  a  m  ~<  a  ->  E. m  e.  a  m 
~~  a ) )
274263, 264, 273sylc 65 . . . . . . . 8  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  -.  A. m  e.  a  m  ~<  a ) )  ->  E. m  e.  a  m  ~~  a )
275 r19.29 3072 . . . . . . . 8  |-  ( ( A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )  /\  E. m  e.  a  m  ~~  a )  ->  E. m  e.  a  ( ( om  C_  m  ->  ( m  X.  m
)  ~~  m )  /\  m  ~~  a ) )
276262, 274, 275syl2anc 693 . . . . . . 7  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  -.  A. m  e.  a  m  ~<  a ) )  ->  E. m  e.  a 
( ( om  C_  m  ->  ( m  X.  m
)  ~~  m )  /\  m  ~~  a ) )
277 simprl 794 . . . . . . . 8  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  -.  A. m  e.  a  m  ~<  a ) )  ->  om  C_  a )
278 onelon 5748 . . . . . . . . . . . . . . . . 17  |-  ( ( a  e.  On  /\  m  e.  a )  ->  m  e.  On )
279 ensym 8005 . . . . . . . . . . . . . . . . . 18  |-  ( m 
~~  a  ->  a  ~~  m )
280 domentr 8015 . . . . . . . . . . . . . . . . . 18  |-  ( ( om  ~<_  a  /\  a  ~~  m )  ->  om  ~<_  m )
281192, 279, 280syl2an 494 . . . . . . . . . . . . . . . . 17  |-  ( ( om  C_  a  /\  m  ~~  a )  ->  om 
~<_  m )
282 domnsym 8086 . . . . . . . . . . . . . . . . . . 19  |-  ( om  ~<_  m  ->  -.  m  ~<  om )
283 nnsdom 8551 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  om  ->  m  ~<  om )
284282, 283nsyl 135 . . . . . . . . . . . . . . . . . 18  |-  ( om  ~<_  m  ->  -.  m  e.  om )
285 ontri1 5757 . . . . . . . . . . . . . . . . . . 19  |-  ( ( om  e.  On  /\  m  e.  On )  ->  ( om  C_  m  <->  -.  m  e.  om )
)
286201, 285mpan 706 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  On  ->  ( om  C_  m  <->  -.  m  e.  om ) )
287284, 286syl5ibr 236 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  On  ->  ( om 
~<_  m  ->  om  C_  m
) )
288278, 281, 287syl2im 40 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  On  /\  m  e.  a )  ->  ( ( om  C_  a  /\  m  ~~  a )  ->  om  C_  m ) )
289288expd 452 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  On  /\  m  e.  a )  ->  ( om  C_  a  ->  ( m  ~~  a  ->  om  C_  m )
) )
290289impcom 446 . . . . . . . . . . . . . 14  |-  ( ( om  C_  a  /\  ( a  e.  On  /\  m  e.  a ) )  ->  ( m  ~~  a  ->  om  C_  m
) )
291290imim1d 82 . . . . . . . . . . . . 13  |-  ( ( om  C_  a  /\  ( a  e.  On  /\  m  e.  a ) )  ->  ( ( om  C_  m  ->  (
m  X.  m ) 
~~  m )  -> 
( m  ~~  a  ->  ( m  X.  m
)  ~~  m )
) )
292291imp32 449 . . . . . . . . . . . 12  |-  ( ( ( om  C_  a  /\  ( a  e.  On  /\  m  e.  a ) )  /\  ( ( om  C_  m  ->  ( m  X.  m ) 
~~  m )  /\  m  ~~  a ) )  ->  ( m  X.  m )  ~~  m
)
293 entr 8008 . . . . . . . . . . . . . . . 16  |-  ( ( ( m  X.  m
)  ~~  m  /\  m  ~~  a )  -> 
( m  X.  m
)  ~~  a )
294293ancoms 469 . . . . . . . . . . . . . . 15  |-  ( ( m  ~~  a  /\  ( m  X.  m
)  ~~  m )  ->  ( m  X.  m
)  ~~  a )
295 xpen 8123 . . . . . . . . . . . . . . . . 17  |-  ( ( a  ~~  m  /\  a  ~~  m )  -> 
( a  X.  a
)  ~~  ( m  X.  m ) )
296295anidms 677 . . . . . . . . . . . . . . . 16  |-  ( a 
~~  m  ->  (
a  X.  a ) 
~~  ( m  X.  m ) )
297 entr 8008 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  X.  a
)  ~~  ( m  X.  m )  /\  (
m  X.  m ) 
~~  a )  -> 
( a  X.  a
)  ~~  a )
298296, 297sylan 488 . . . . . . . . . . . . . . 15  |-  ( ( a  ~~  m  /\  ( m  X.  m
)  ~~  a )  ->  ( a  X.  a
)  ~~  a )
299279, 294, 298syl2an2r 876 . . . . . . . . . . . . . 14  |-  ( ( m  ~~  a  /\  ( m  X.  m
)  ~~  m )  ->  ( a  X.  a
)  ~~  a )
300299ex 450 . . . . . . . . . . . . 13  |-  ( m 
~~  a  ->  (
( m  X.  m
)  ~~  m  ->  ( a  X.  a ) 
~~  a ) )
301300ad2antll 765 . . . . . . . . . . . 12  |-  ( ( ( om  C_  a  /\  ( a  e.  On  /\  m  e.  a ) )  /\  ( ( om  C_  m  ->  ( m  X.  m ) 
~~  m )  /\  m  ~~  a ) )  ->  ( ( m  X.  m )  ~~  m  ->  ( a  X.  a )  ~~  a
) )
302292, 301mpd 15 . . . . . . . . . . 11  |-  ( ( ( om  C_  a  /\  ( a  e.  On  /\  m  e.  a ) )  /\  ( ( om  C_  m  ->  ( m  X.  m ) 
~~  m )  /\  m  ~~  a ) )  ->  ( a  X.  a )  ~~  a
)
303302ex 450 . . . . . . . . . 10  |-  ( ( om  C_  a  /\  ( a  e.  On  /\  m  e.  a ) )  ->  ( (
( om  C_  m  ->  ( m  X.  m
)  ~~  m )  /\  m  ~~  a )  ->  ( a  X.  a )  ~~  a
) )
304303expr 643 . . . . . . . . 9  |-  ( ( om  C_  a  /\  a  e.  On )  ->  ( m  e.  a  ->  ( ( ( om  C_  m  ->  ( m  X.  m ) 
~~  m )  /\  m  ~~  a )  -> 
( a  X.  a
)  ~~  a )
) )
305304rexlimdv 3030 . . . . . . . 8  |-  ( ( om  C_  a  /\  a  e.  On )  ->  ( E. m  e.  a  ( ( om  C_  m  ->  ( m  X.  m )  ~~  m )  /\  m  ~~  a )  ->  (
a  X.  a ) 
~~  a ) )
306277, 263, 305syl2anc 693 . . . . . . 7  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  -.  A. m  e.  a  m  ~<  a ) )  -> 
( E. m  e.  a  ( ( om  C_  m  ->  ( m  X.  m )  ~~  m )  /\  m  ~~  a )  ->  (
a  X.  a ) 
~~  a ) )
307276, 306mpd 15 . . . . . 6  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  -.  A. m  e.  a  m  ~<  a ) )  -> 
( a  X.  a
)  ~~  a )
308307expr 643 . . . . 5  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  om  C_  a
)  ->  ( -.  A. m  e.  a  m 
~<  a  ->  ( a  X.  a )  ~~  a ) )
309261, 308pm2.61d 170 . . . 4  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  om  C_  a
)  ->  ( a  X.  a )  ~~  a
)
310309exp31 630 . . 3  |-  ( a  e.  On  ->  ( A. m  e.  a 
( om  C_  m  ->  ( m  X.  m
)  ~~  m )  ->  ( om  C_  a  ->  ( a  X.  a
)  ~~  a )
) )
3116, 12, 310tfis3 7057 . 2  |-  ( A  e.  On  ->  ( om  C_  A  ->  ( A  X.  A )  ~~  A ) )
312311imp 445 1  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A  X.  A )  ~~  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   <.cop 4183   class class class wbr 4653   {copab 4712    _E cep 5028   Se wse 5071    We wwe 5072    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Ord word 5722   Oncon0 5723   Lim wlim 5724   suc csuc 5725    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889   omcom 7065   1stc1st 7166   2ndc2nd 7167   1oc1o 7553    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954   Fincfn 7955  OrdIsocoi 8414   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765
This theorem is referenced by:  infxpen  8837
  Copyright terms: Public domain W3C validator