| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xmulasslem3 | Structured version Visualization version Unicode version | ||
| Description: Lemma for xmulass 12117. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmulasslem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn 10026 |
. . . . . . . . . 10
| |
| 2 | recn 10026 |
. . . . . . . . . 10
| |
| 3 | recn 10026 |
. . . . . . . . . 10
| |
| 4 | mulass 10024 |
. . . . . . . . . 10
| |
| 5 | 1, 2, 3, 4 | syl3an 1368 |
. . . . . . . . 9
|
| 6 | 5 | 3expa 1265 |
. . . . . . . 8
|
| 7 | remulcl 10021 |
. . . . . . . . 9
| |
| 8 | rexmul 12101 |
. . . . . . . . 9
| |
| 9 | 7, 8 | sylan 488 |
. . . . . . . 8
|
| 10 | remulcl 10021 |
. . . . . . . . . 10
| |
| 11 | rexmul 12101 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | sylan2 491 |
. . . . . . . . 9
|
| 13 | 12 | anassrs 680 |
. . . . . . . 8
|
| 14 | 6, 9, 13 | 3eqtr4d 2666 |
. . . . . . 7
|
| 15 | rexmul 12101 |
. . . . . . . . 9
| |
| 16 | 15 | adantr 481 |
. . . . . . . 8
|
| 17 | 16 | oveq1d 6665 |
. . . . . . 7
|
| 18 | rexmul 12101 |
. . . . . . . . 9
| |
| 19 | 18 | adantll 750 |
. . . . . . . 8
|
| 20 | 19 | oveq2d 6666 |
. . . . . . 7
|
| 21 | 14, 17, 20 | 3eqtr4d 2666 |
. . . . . 6
|
| 22 | 21 | adantll 750 |
. . . . 5
|
| 23 | oveq2 6658 |
. . . . . . . . 9
| |
| 24 | simp1l 1085 |
. . . . . . . . . . 11
| |
| 25 | simp2l 1087 |
. . . . . . . . . . 11
| |
| 26 | xmulcl 12103 |
. . . . . . . . . . 11
| |
| 27 | 24, 25, 26 | syl2anc 693 |
. . . . . . . . . 10
|
| 28 | xmulgt0 12113 |
. . . . . . . . . . 11
| |
| 29 | 28 | 3adant3 1081 |
. . . . . . . . . 10
|
| 30 | xmulpnf1 12104 |
. . . . . . . . . 10
| |
| 31 | 27, 29, 30 | syl2anc 693 |
. . . . . . . . 9
|
| 32 | 23, 31 | sylan9eqr 2678 |
. . . . . . . 8
|
| 33 | simpl1 1064 |
. . . . . . . . 9
| |
| 34 | xmulpnf1 12104 |
. . . . . . . . 9
| |
| 35 | 33, 34 | syl 17 |
. . . . . . . 8
|
| 36 | 32, 35 | eqtr4d 2659 |
. . . . . . 7
|
| 37 | oveq2 6658 |
. . . . . . . . 9
| |
| 38 | xmulpnf1 12104 |
. . . . . . . . . 10
| |
| 39 | 38 | 3ad2ant2 1083 |
. . . . . . . . 9
|
| 40 | 37, 39 | sylan9eqr 2678 |
. . . . . . . 8
|
| 41 | 40 | oveq2d 6666 |
. . . . . . 7
|
| 42 | 36, 41 | eqtr4d 2659 |
. . . . . 6
|
| 43 | 42 | adantlr 751 |
. . . . 5
|
| 44 | simpl3r 1117 |
. . . . . 6
| |
| 45 | xmulasslem2 12112 |
. . . . . 6
| |
| 46 | 44, 45 | sylan 488 |
. . . . 5
|
| 47 | simp3l 1089 |
. . . . . . 7
| |
| 48 | elxr 11950 |
. . . . . . 7
| |
| 49 | 47, 48 | sylib 208 |
. . . . . 6
|
| 50 | 49 | adantr 481 |
. . . . 5
|
| 51 | 22, 43, 46, 50 | mpjao3dan 1395 |
. . . 4
|
| 52 | 51 | anassrs 680 |
. . 3
|
| 53 | xmulpnf2 12105 |
. . . . . . . 8
| |
| 54 | 53 | 3ad2ant3 1084 |
. . . . . . 7
|
| 55 | 34 | 3ad2ant1 1082 |
. . . . . . 7
|
| 56 | 54, 55 | eqtr4d 2659 |
. . . . . 6
|
| 57 | 56 | adantr 481 |
. . . . 5
|
| 58 | oveq2 6658 |
. . . . . . 7
| |
| 59 | 58, 55 | sylan9eqr 2678 |
. . . . . 6
|
| 60 | 59 | oveq1d 6665 |
. . . . 5
|
| 61 | oveq1 6657 |
. . . . . . 7
| |
| 62 | 61, 54 | sylan9eqr 2678 |
. . . . . 6
|
| 63 | 62 | oveq2d 6666 |
. . . . 5
|
| 64 | 57, 60, 63 | 3eqtr4d 2666 |
. . . 4
|
| 65 | 64 | adantlr 751 |
. . 3
|
| 66 | simpl2r 1115 |
. . . 4
| |
| 67 | xmulasslem2 12112 |
. . . 4
| |
| 68 | 66, 67 | sylan 488 |
. . 3
|
| 69 | elxr 11950 |
. . . . 5
| |
| 70 | 25, 69 | sylib 208 |
. . . 4
|
| 71 | 70 | adantr 481 |
. . 3
|
| 72 | 52, 65, 68, 71 | mpjao3dan 1395 |
. 2
|
| 73 | simpl3 1066 |
. . . 4
| |
| 74 | 73, 53 | syl 17 |
. . 3
|
| 75 | oveq1 6657 |
. . . . 5
| |
| 76 | xmulpnf2 12105 |
. . . . . 6
| |
| 77 | 76 | 3ad2ant2 1083 |
. . . . 5
|
| 78 | 75, 77 | sylan9eqr 2678 |
. . . 4
|
| 79 | 78 | oveq1d 6665 |
. . 3
|
| 80 | oveq1 6657 |
. . . 4
| |
| 81 | xmulcl 12103 |
. . . . . 6
| |
| 82 | 25, 47, 81 | syl2anc 693 |
. . . . 5
|
| 83 | xmulgt0 12113 |
. . . . . 6
| |
| 84 | 83 | 3adant1 1079 |
. . . . 5
|
| 85 | xmulpnf2 12105 |
. . . . 5
| |
| 86 | 82, 84, 85 | syl2anc 693 |
. . . 4
|
| 87 | 80, 86 | sylan9eqr 2678 |
. . 3
|
| 88 | 74, 79, 87 | 3eqtr4d 2666 |
. 2
|
| 89 | simp1r 1086 |
. . 3
| |
| 90 | xmulasslem2 12112 |
. . 3
| |
| 91 | 89, 90 | sylan 488 |
. 2
|
| 92 | elxr 11950 |
. . 3
| |
| 93 | 24, 92 | sylib 208 |
. 2
|
| 94 | 72, 88, 91, 93 | mpjao3dan 1395 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-xmul 11948 |
| This theorem is referenced by: xmulass 12117 |
| Copyright terms: Public domain | W3C validator |