MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulasslem Structured version   Visualization version   Unicode version

Theorem xmulasslem 12115
Description: Lemma for xmulass 12117. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
xmulasslem.1  |-  ( x  =  D  ->  ( ps 
<->  X  =  Y ) )
xmulasslem.2  |-  ( x  =  -e D  ->  ( ps  <->  E  =  F ) )
xmulasslem.x  |-  ( ph  ->  X  e.  RR* )
xmulasslem.y  |-  ( ph  ->  Y  e.  RR* )
xmulasslem.d  |-  ( ph  ->  D  e.  RR* )
xmulasslem.ps  |-  ( (
ph  /\  ( x  e.  RR*  /\  0  < 
x ) )  ->  ps )
xmulasslem.0  |-  ( ph  ->  ( x  =  0  ->  ps ) )
xmulasslem.e  |-  ( ph  ->  E  =  -e
X )
xmulasslem.f  |-  ( ph  ->  F  =  -e
Y )
Assertion
Ref Expression
xmulasslem  |-  ( ph  ->  X  =  Y )
Distinct variable groups:    x, D    x, E    x, F    ph, x    x, X    x, Y
Allowed substitution hint:    ps( x)

Proof of Theorem xmulasslem
StepHypRef Expression
1 xmulasslem.d . . 3  |-  ( ph  ->  D  e.  RR* )
2 0xr 10086 . . 3  |-  0  e.  RR*
3 xrltso 11974 . . . 4  |-  <  Or  RR*
4 solin 5058 . . . 4  |-  ( (  <  Or  RR*  /\  ( D  e.  RR*  /\  0  e.  RR* ) )  -> 
( D  <  0  \/  D  =  0  \/  0  <  D ) )
53, 4mpan 706 . . 3  |-  ( ( D  e.  RR*  /\  0  e.  RR* )  ->  ( D  <  0  \/  D  =  0  \/  0  <  D ) )
61, 2, 5sylancl 694 . 2  |-  ( ph  ->  ( D  <  0  \/  D  =  0  \/  0  <  D ) )
7 xlt0neg1 12050 . . . . . 6  |-  ( D  e.  RR*  ->  ( D  <  0  <->  0  <  -e D ) )
81, 7syl 17 . . . . 5  |-  ( ph  ->  ( D  <  0  <->  0  <  -e D ) )
9 xnegcl 12044 . . . . . . 7  |-  ( D  e.  RR*  ->  -e
D  e.  RR* )
101, 9syl 17 . . . . . 6  |-  ( ph  -> 
-e D  e. 
RR* )
11 breq2 4657 . . . . . . . . 9  |-  ( x  =  -e D  ->  ( 0  < 
x  <->  0  <  -e
D ) )
12 xmulasslem.2 . . . . . . . . 9  |-  ( x  =  -e D  ->  ( ps  <->  E  =  F ) )
1311, 12imbi12d 334 . . . . . . . 8  |-  ( x  =  -e D  ->  ( ( 0  <  x  ->  ps ) 
<->  ( 0  <  -e
D  ->  E  =  F ) ) )
1413imbi2d 330 . . . . . . 7  |-  ( x  =  -e D  ->  ( ( ph  ->  ( 0  <  x  ->  ps ) )  <->  ( ph  ->  ( 0  <  -e
D  ->  E  =  F ) ) ) )
15 xmulasslem.ps . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR*  /\  0  < 
x ) )  ->  ps )
1615exp32 631 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR*  ->  ( 0  <  x  ->  ps ) ) )
1716com12 32 . . . . . . 7  |-  ( x  e.  RR*  ->  ( ph  ->  ( 0  <  x  ->  ps ) ) )
1814, 17vtoclga 3272 . . . . . 6  |-  (  -e D  e.  RR*  ->  (
ph  ->  ( 0  <  -e D  ->  E  =  F )
) )
1910, 18mpcom 38 . . . . 5  |-  ( ph  ->  ( 0  <  -e
D  ->  E  =  F ) )
208, 19sylbid 230 . . . 4  |-  ( ph  ->  ( D  <  0  ->  E  =  F ) )
21 xmulasslem.e . . . . . 6  |-  ( ph  ->  E  =  -e
X )
22 xmulasslem.f . . . . . 6  |-  ( ph  ->  F  =  -e
Y )
2321, 22eqeq12d 2637 . . . . 5  |-  ( ph  ->  ( E  =  F  <->  -e X  = 
-e Y ) )
24 xmulasslem.x . . . . . 6  |-  ( ph  ->  X  e.  RR* )
25 xmulasslem.y . . . . . 6  |-  ( ph  ->  Y  e.  RR* )
26 xneg11 12046 . . . . . 6  |-  ( ( X  e.  RR*  /\  Y  e.  RR* )  ->  (  -e X  =  -e Y  <->  X  =  Y
) )
2724, 25, 26syl2anc 693 . . . . 5  |-  ( ph  ->  (  -e X  =  -e Y  <-> 
X  =  Y ) )
2823, 27bitrd 268 . . . 4  |-  ( ph  ->  ( E  =  F  <-> 
X  =  Y ) )
2920, 28sylibd 229 . . 3  |-  ( ph  ->  ( D  <  0  ->  X  =  Y ) )
30 eqeq1 2626 . . . . . . 7  |-  ( x  =  D  ->  (
x  =  0  <->  D  =  0 ) )
31 xmulasslem.1 . . . . . . 7  |-  ( x  =  D  ->  ( ps 
<->  X  =  Y ) )
3230, 31imbi12d 334 . . . . . 6  |-  ( x  =  D  ->  (
( x  =  0  ->  ps )  <->  ( D  =  0  ->  X  =  Y ) ) )
3332imbi2d 330 . . . . 5  |-  ( x  =  D  ->  (
( ph  ->  ( x  =  0  ->  ps ) )  <->  ( ph  ->  ( D  =  0  ->  X  =  Y ) ) ) )
34 xmulasslem.0 . . . . 5  |-  ( ph  ->  ( x  =  0  ->  ps ) )
3533, 34vtoclg 3266 . . . 4  |-  ( D  e.  RR*  ->  ( ph  ->  ( D  =  0  ->  X  =  Y ) ) )
361, 35mpcom 38 . . 3  |-  ( ph  ->  ( D  =  0  ->  X  =  Y ) )
37 breq2 4657 . . . . . . 7  |-  ( x  =  D  ->  (
0  <  x  <->  0  <  D ) )
3837, 31imbi12d 334 . . . . . 6  |-  ( x  =  D  ->  (
( 0  <  x  ->  ps )  <->  ( 0  <  D  ->  X  =  Y ) ) )
3938imbi2d 330 . . . . 5  |-  ( x  =  D  ->  (
( ph  ->  ( 0  <  x  ->  ps ) )  <->  ( ph  ->  ( 0  <  D  ->  X  =  Y ) ) ) )
4039, 17vtoclga 3272 . . . 4  |-  ( D  e.  RR*  ->  ( ph  ->  ( 0  <  D  ->  X  =  Y ) ) )
411, 40mpcom 38 . . 3  |-  ( ph  ->  ( 0  <  D  ->  X  =  Y ) )
4229, 36, 413jaod 1392 . 2  |-  ( ph  ->  ( ( D  <  0  \/  D  =  0  \/  0  < 
D )  ->  X  =  Y ) )
436, 42mpd 15 1  |-  ( ph  ->  X  =  Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990   class class class wbr 4653    Or wor 5034   0cc0 9936   RR*cxr 10073    < clt 10074    -ecxne 11943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-xneg 11946
This theorem is referenced by:  xmulass  12117
  Copyright terms: Public domain W3C validator