MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulpnf1 Structured version   Visualization version   Unicode version

Theorem xmulpnf1 12104
Description: Multiplication by plus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulpnf1  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  ( A xe +oo )  = +oo )

Proof of Theorem xmulpnf1
StepHypRef Expression
1 pnfxr 10092 . . . 4  |- +oo  e.  RR*
2 xmulval 12056 . . . 4  |-  ( ( A  e.  RR*  /\ +oo  e.  RR* )  ->  ( A xe +oo )  =  if ( ( A  =  0  \/ +oo  =  0 ) ,  0 ,  if ( ( ( ( 0  < +oo  /\  A  = +oo )  \/  ( +oo  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\ +oo  = +oo )  \/  ( A  <  0  /\ +oo  = -oo ) ) ) , +oo ,  if ( ( ( ( 0  < +oo  /\  A  = -oo )  \/  ( +oo  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\ +oo  = -oo )  \/  ( A  <  0  /\ +oo  = +oo ) ) ) , -oo ,  ( A  x. +oo ) ) ) ) )
31, 2mpan2 707 . . 3  |-  ( A  e.  RR*  ->  ( A xe +oo )  =  if ( ( A  =  0  \/ +oo  =  0 ) ,  0 ,  if ( ( ( ( 0  < +oo  /\  A  = +oo )  \/  ( +oo  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\ +oo  = +oo )  \/  ( A  <  0  /\ +oo  = -oo ) ) ) , +oo ,  if ( ( ( ( 0  < +oo  /\  A  = -oo )  \/  ( +oo  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\ +oo  = -oo )  \/  ( A  <  0  /\ +oo  = +oo ) ) ) , -oo ,  ( A  x. +oo ) ) ) ) )
43adantr 481 . 2  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  ( A xe +oo )  =  if ( ( A  =  0  \/ +oo  =  0 ) ,  0 ,  if ( ( ( ( 0  < +oo  /\  A  = +oo )  \/  ( +oo  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\ +oo  = +oo )  \/  ( A  <  0  /\ +oo  = -oo ) ) ) , +oo ,  if ( ( ( ( 0  < +oo  /\  A  = -oo )  \/  ( +oo  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\ +oo  = -oo )  \/  ( A  <  0  /\ +oo  = +oo ) ) ) , -oo ,  ( A  x. +oo ) ) ) ) )
5 0xr 10086 . . . . . 6  |-  0  e.  RR*
6 xrltne 11994 . . . . . 6  |-  ( ( 0  e.  RR*  /\  A  e.  RR*  /\  0  < 
A )  ->  A  =/=  0 )
75, 6mp3an1 1411 . . . . 5  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  A  =/=  0 )
8 0re 10040 . . . . . . 7  |-  0  e.  RR
9 renepnf 10087 . . . . . . 7  |-  ( 0  e.  RR  ->  0  =/= +oo )
108, 9ax-mp 5 . . . . . 6  |-  0  =/= +oo
1110necomi 2848 . . . . 5  |- +oo  =/=  0
127, 11jctir 561 . . . 4  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  ( A  =/=  0  /\ +oo  =/=  0 ) )
13 neanior 2886 . . . 4  |-  ( ( A  =/=  0  /\ +oo  =/=  0 )  <->  -.  ( A  =  0  \/ +oo  =  0 ) )
1412, 13sylib 208 . . 3  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  -.  ( A  =  0  \/ +oo  =  0 ) )
1514iffalsed 4097 . 2  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  if ( ( A  =  0  \/ +oo  = 
0 ) ,  0 ,  if ( ( ( ( 0  < +oo  /\  A  = +oo )  \/  ( +oo  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\ +oo  = +oo )  \/  ( A  <  0  /\ +oo  = -oo ) ) ) , +oo ,  if ( ( ( ( 0  < +oo  /\  A  = -oo )  \/  ( +oo  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\ +oo  = -oo )  \/  ( A  <  0  /\ +oo  = +oo ) ) ) , -oo ,  ( A  x. +oo ) ) ) )  =  if ( ( ( ( 0  < +oo  /\  A  = +oo )  \/  ( +oo  <  0  /\  A  = -oo ) )  \/  (
( 0  <  A  /\ +oo  = +oo )  \/  ( A  <  0  /\ +oo  = -oo )
) ) , +oo ,  if ( ( ( ( 0  < +oo  /\  A  = -oo )  \/  ( +oo  <  0  /\  A  = +oo ) )  \/  (
( 0  <  A  /\ +oo  = -oo )  \/  ( A  <  0  /\ +oo  = +oo )
) ) , -oo ,  ( A  x. +oo ) ) ) )
16 simpr 477 . . . . . 6  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  0  <  A )
17 eqid 2622 . . . . . 6  |- +oo  = +oo
1816, 17jctir 561 . . . . 5  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  (
0  <  A  /\ +oo  = +oo ) )
1918orcd 407 . . . 4  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  (
( 0  <  A  /\ +oo  = +oo )  \/  ( A  <  0  /\ +oo  = -oo )
) )
2019olcd 408 . . 3  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  (
( ( 0  < +oo  /\  A  = +oo )  \/  ( +oo  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\ +oo  = +oo )  \/  ( A  <  0  /\ +oo  = -oo ) ) ) )
2120iftrued 4094 . 2  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  if ( ( ( ( 0  < +oo  /\  A  = +oo )  \/  ( +oo  <  0  /\  A  = -oo ) )  \/  (
( 0  <  A  /\ +oo  = +oo )  \/  ( A  <  0  /\ +oo  = -oo )
) ) , +oo ,  if ( ( ( ( 0  < +oo  /\  A  = -oo )  \/  ( +oo  <  0  /\  A  = +oo ) )  \/  (
( 0  <  A  /\ +oo  = -oo )  \/  ( A  <  0  /\ +oo  = +oo )
) ) , -oo ,  ( A  x. +oo ) ) )  = +oo )
224, 15, 213eqtrd 2660 1  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  ( A xe +oo )  = +oo )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   ifcif 4086   class class class wbr 4653  (class class class)co 6650   RRcr 9935   0cc0 9936    x. cmul 9941   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074   xecxmu 11945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-xmul 11948
This theorem is referenced by:  xmulpnf2  12105  xmulmnf1  12106  xmulpnf1n  12108  xmulgt0  12113  xmulasslem3  12116  xlemul1a  12118  xadddilem  12124  xdivpnfrp  29641  xrge0adddir  29692  esumcst  30125  esumpinfval  30135
  Copyright terms: Public domain W3C validator