Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem5 Structured version   Visualization version   Unicode version

Theorem poimirlem5 33414
Description: Lemma for poimir 33442 to establish that, for the simplices defined by a walk along the edges of an  N-cube, if the starting vertex is not opposite a given face, it is the earliest vertex of the face on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0  |-  ( ph  ->  N  e.  NN )
poimirlem22.s  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
poimirlem9.1  |-  ( ph  ->  T  e.  S )
poimirlem5.2  |-  ( ph  ->  0  <  ( 2nd `  T ) )
Assertion
Ref Expression
poimirlem5  |-  ( ph  ->  ( F `  0
)  =  ( 1st `  ( 1st `  T
) ) )
Distinct variable groups:    f, j,
t, y    ph, j, y   
j, F, y    j, N, y    T, j, y    ph, t    f, K, j, t    f, N, t    T, f    f, F, t   
t, T    S, j,
t, y
Allowed substitution hints:    ph( f)    S( f)    K( y)

Proof of Theorem poimirlem5
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 poimirlem9.1 . . . 4  |-  ( ph  ->  T  e.  S )
2 fveq2 6191 . . . . . . . . . . . 12  |-  ( t  =  T  ->  ( 2nd `  t )  =  ( 2nd `  T
) )
32breq2d 4665 . . . . . . . . . . 11  |-  ( t  =  T  ->  (
y  <  ( 2nd `  t )  <->  y  <  ( 2nd `  T ) ) )
43ifbid 4108 . . . . . . . . . 10  |-  ( t  =  T  ->  if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  =  if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) ) )
54csbeq1d 3540 . . . . . . . . 9  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
6 fveq2 6191 . . . . . . . . . . . 12  |-  ( t  =  T  ->  ( 1st `  t )  =  ( 1st `  T
) )
76fveq2d 6195 . . . . . . . . . . 11  |-  ( t  =  T  ->  ( 1st `  ( 1st `  t
) )  =  ( 1st `  ( 1st `  T ) ) )
86fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( t  =  T  ->  ( 2nd `  ( 1st `  t
) )  =  ( 2nd `  ( 1st `  T ) ) )
98imaeq1d 5465 . . . . . . . . . . . . 13  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) ) )
109xpeq1d 5138 . . . . . . . . . . . 12  |-  ( t  =  T  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... j
) )  X.  {
1 } ) )
118imaeq1d 5465 . . . . . . . . . . . . 13  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) ) )
1211xpeq1d 5138 . . . . . . . . . . . 12  |-  ( t  =  T  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) )
1310, 12uneq12d 3768 . . . . . . . . . . 11  |-  ( t  =  T  ->  (
( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )
147, 13oveq12d 6668 . . . . . . . . . 10  |-  ( t  =  T  ->  (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
1514csbeq2dv 3992 . . . . . . . . 9  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
165, 15eqtrd 2656 . . . . . . . 8  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
1716mpteq2dv 4745 . . . . . . 7  |-  ( t  =  T  ->  (
y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
1817eqeq2d 2632 . . . . . 6  |-  ( t  =  T  ->  ( F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
19 poimirlem22.s . . . . . 6  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
2018, 19elrab2 3366 . . . . 5  |-  ( T  e.  S  <->  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
2120simprbi 480 . . . 4  |-  ( T  e.  S  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
221, 21syl 17 . . 3  |-  ( ph  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
23 breq1 4656 . . . . . . 7  |-  ( y  =  0  ->  (
y  <  ( 2nd `  T )  <->  0  <  ( 2nd `  T ) ) )
24 id 22 . . . . . . 7  |-  ( y  =  0  ->  y  =  0 )
2523, 24ifbieq1d 4109 . . . . . 6  |-  ( y  =  0  ->  if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  =  if ( 0  <  ( 2nd `  T
) ,  0 ,  ( y  +  1 ) ) )
26 poimirlem5.2 . . . . . . 7  |-  ( ph  ->  0  <  ( 2nd `  T ) )
2726iftrued 4094 . . . . . 6  |-  ( ph  ->  if ( 0  < 
( 2nd `  T
) ,  0 ,  ( y  +  1 ) )  =  0 )
2825, 27sylan9eqr 2678 . . . . 5  |-  ( (
ph  /\  y  = 
0 )  ->  if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  =  0 )
2928csbeq1d 3540 . . . 4  |-  ( (
ph  /\  y  = 
0 )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_
0  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
30 c0ex 10034 . . . . . . 7  |-  0  e.  _V
31 oveq2 6658 . . . . . . . . . . . . 13  |-  ( j  =  0  ->  (
1 ... j )  =  ( 1 ... 0
) )
32 fz10 12362 . . . . . . . . . . . . 13  |-  ( 1 ... 0 )  =  (/)
3331, 32syl6eq 2672 . . . . . . . . . . . 12  |-  ( j  =  0  ->  (
1 ... j )  =  (/) )
3433imaeq2d 5466 . . . . . . . . . . 11  |-  ( j  =  0  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" (/) ) )
3534xpeq1d 5138 . . . . . . . . . 10  |-  ( j  =  0  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) " (/) )  X.  { 1 } ) )
36 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( j  =  0  ->  (
j  +  1 )  =  ( 0  +  1 ) )
37 0p1e1 11132 . . . . . . . . . . . . . 14  |-  ( 0  +  1 )  =  1
3836, 37syl6eq 2672 . . . . . . . . . . . . 13  |-  ( j  =  0  ->  (
j  +  1 )  =  1 )
3938oveq1d 6665 . . . . . . . . . . . 12  |-  ( j  =  0  ->  (
( j  +  1 ) ... N )  =  ( 1 ... N ) )
4039imaeq2d 5466 . . . . . . . . . . 11  |-  ( j  =  0  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) ) )
4140xpeq1d 5138 . . . . . . . . . 10  |-  ( j  =  0  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... N
) )  X.  {
0 } ) )
4235, 41uneq12d 3768 . . . . . . . . 9  |-  ( j  =  0  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" (/) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... N ) )  X.  { 0 } ) ) )
43 ima0 5481 . . . . . . . . . . . . 13  |-  ( ( 2nd `  ( 1st `  T ) ) " (/) )  =  (/)
4443xpeq1i 5135 . . . . . . . . . . . 12  |-  ( ( ( 2nd `  ( 1st `  T ) )
" (/) )  X.  {
1 } )  =  ( (/)  X.  { 1 } )
45 0xp 5199 . . . . . . . . . . . 12  |-  ( (/)  X. 
{ 1 } )  =  (/)
4644, 45eqtri 2644 . . . . . . . . . . 11  |-  ( ( ( 2nd `  ( 1st `  T ) )
" (/) )  X.  {
1 } )  =  (/)
4746uneq1i 3763 . . . . . . . . . 10  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" (/) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... N ) )  X.  { 0 } ) )  =  (
(/)  u.  ( (
( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  X. 
{ 0 } ) )
48 uncom 3757 . . . . . . . . . 10  |-  ( (/)  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... N ) )  X.  { 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... N ) )  X.  { 0 } )  u.  (/) )
49 un0 3967 . . . . . . . . . 10  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  X. 
{ 0 } )  u.  (/) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  X. 
{ 0 } )
5047, 48, 493eqtri 2648 . . . . . . . . 9  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" (/) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... N ) )  X.  { 0 } ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  X. 
{ 0 } )
5142, 50syl6eq 2672 . . . . . . . 8  |-  ( j  =  0  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  X. 
{ 0 } ) )
5251oveq2d 6666 . . . . . . 7  |-  ( j  =  0  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  X. 
{ 0 } ) ) )
5330, 52csbie 3559 . . . . . 6  |-  [_ 0  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  X. 
{ 0 } ) )
54 elrabi 3359 . . . . . . . . . . . . . . 15  |-  ( T  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  ->  T  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
5554, 19eleq2s 2719 . . . . . . . . . . . . . 14  |-  ( T  e.  S  ->  T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
561, 55syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
57 xp1st 7198 . . . . . . . . . . . . 13  |-  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
5856, 57syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1st `  T
)  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )
59 xp2nd 7199 . . . . . . . . . . . 12  |-  ( ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 2nd `  ( 1st `  T ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
6058, 59syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
61 fvex 6201 . . . . . . . . . . . 12  |-  ( 2nd `  ( 1st `  T
) )  e.  _V
62 f1oeq1 6127 . . . . . . . . . . . 12  |-  ( f  =  ( 2nd `  ( 1st `  T ) )  ->  ( f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) ) )
6361, 62elab 3350 . . . . . . . . . . 11  |-  ( ( 2nd `  ( 1st `  T ) )  e. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) }  <->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
6460, 63sylib 208 . . . . . . . . . 10  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )
65 f1ofo 6144 . . . . . . . . . 10  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N )
-onto-> ( 1 ... N
) )
6664, 65syl 17 . . . . . . . . 9  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) )
67 foima 6120 . . . . . . . . 9  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
) -onto-> ( 1 ... N )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
6866, 67syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
6968xpeq1d 5138 . . . . . . 7  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... N ) )  X.  { 0 } )  =  ( ( 1 ... N )  X.  { 0 } ) )
7069oveq2d 6666 . . . . . 6  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  X. 
{ 0 } ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( 1 ... N )  X.  { 0 } ) ) )
7153, 70syl5eq 2668 . . . . 5  |-  ( ph  ->  [_ 0  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( 1 ... N
)  X.  { 0 } ) ) )
7271adantr 481 . . . 4  |-  ( (
ph  /\  y  = 
0 )  ->  [_ 0  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( 1 ... N
)  X.  { 0 } ) ) )
7329, 72eqtrd 2656 . . 3  |-  ( (
ph  /\  y  = 
0 )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( 1 ... N
)  X.  { 0 } ) ) )
74 poimir.0 . . . . 5  |-  ( ph  ->  N  e.  NN )
75 nnm1nn0 11334 . . . . 5  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
7674, 75syl 17 . . . 4  |-  ( ph  ->  ( N  -  1 )  e.  NN0 )
77 0elfz 12436 . . . 4  |-  ( ( N  -  1 )  e.  NN0  ->  0  e.  ( 0 ... ( N  -  1 ) ) )
7876, 77syl 17 . . 3  |-  ( ph  ->  0  e.  ( 0 ... ( N  - 
1 ) ) )
79 ovexd 6680 . . 3  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( 1 ... N
)  X.  { 0 } ) )  e. 
_V )
8022, 73, 78, 79fvmptd 6288 . 2  |-  ( ph  ->  ( F `  0
)  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( 1 ... N )  X.  { 0 } ) ) )
81 ovexd 6680 . . 3  |-  ( ph  ->  ( 1 ... N
)  e.  _V )
82 xp1st 7198 . . . . 5  |-  ( ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
8358, 82syl 17 . . . 4  |-  ( ph  ->  ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
84 elmapfn 7880 . . . 4  |-  ( ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
8583, 84syl 17 . . 3  |-  ( ph  ->  ( 1st `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
86 fnconstg 6093 . . . 4  |-  ( 0  e.  _V  ->  (
( 1 ... N
)  X.  { 0 } )  Fn  (
1 ... N ) )
8730, 86mp1i 13 . . 3  |-  ( ph  ->  ( ( 1 ... N )  X.  {
0 } )  Fn  ( 1 ... N
) )
88 eqidd 2623 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 n )  =  ( ( 1st `  ( 1st `  T ) ) `
 n ) )
8930fvconst2 6469 . . . 4  |-  ( n  e.  ( 1 ... N )  ->  (
( ( 1 ... N )  X.  {
0 } ) `  n )  =  0 )
9089adantl 482 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( ( 1 ... N )  X.  {
0 } ) `  n )  =  0 )
91 elmapi 7879 . . . . . . . 8  |-  ( ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 0..^ K ) )
9283, 91syl 17 . . . . . . 7  |-  ( ph  ->  ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 0..^ K ) )
9392ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 n )  e.  ( 0..^ K ) )
94 elfzonn0 12512 . . . . . 6  |-  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  e.  ( 0..^ K )  ->  ( ( 1st `  ( 1st `  T
) ) `  n
)  e.  NN0 )
9593, 94syl 17 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 n )  e. 
NN0 )
9695nn0cnd 11353 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 n )  e.  CC )
9796addid1d 10236 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( ( 1st `  ( 1st `  T ) ) `
 n )  +  0 )  =  ( ( 1st `  ( 1st `  T ) ) `
 n ) )
9881, 85, 87, 85, 88, 90, 97offveq 6918 . 2  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( 1 ... N
)  X.  { 0 } ) )  =  ( 1st `  ( 1st `  T ) ) )
9980, 98eqtrd 2656 1  |-  ( ph  ->  ( F `  0
)  =  ( 1st `  ( 1st `  T
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   {crab 2916   _Vcvv 3200   [_csb 3533    u. cun 3572   (/)c0 3915   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   "cima 5117    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    oFcof 6895   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    - cmin 10266   NNcn 11020   NN0cn0 11292   ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  poimirlem12  33421  poimirlem14  33423
  Copyright terms: Public domain W3C validator