Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem22 Structured version   Visualization version   Unicode version

Theorem poimirlem22 33431
Description: Lemma for poimir 33442, that a given face belongs to exactly two simplices, provided it's not on the boundary of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0  |-  ( ph  ->  N  e.  NN )
poimirlem22.s  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
poimirlem22.1  |-  ( ph  ->  F : ( 0 ... ( N  - 
1 ) ) --> ( ( 0 ... K
)  ^m  ( 1 ... N ) ) )
poimirlem22.2  |-  ( ph  ->  T  e.  S )
poimirlem22.3  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  E. p  e.  ran  F ( p `
 n )  =/=  0 )
poimirlem22.4  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  E. p  e.  ran  F ( p `
 n )  =/= 
K )
Assertion
Ref Expression
poimirlem22  |-  ( ph  ->  E! z  e.  S  z  =/=  T )
Distinct variable groups:    f, j, n, p, t, y, z    ph, j, n, y    j, F, n, y    j, N, n, y    T, j, n, y    ph, p, t    f, K, j, n, p, t    f, N, p, t    T, f, p    ph, z    f, F, p, t, z    z, K    z, N    t, T, z    S, j, n, p, t, y, z
Allowed substitution hints:    ph( f)    S( f)    K( y)

Proof of Theorem poimirlem22
StepHypRef Expression
1 poimir.0 . . . . 5  |-  ( ph  ->  N  e.  NN )
21adantr 481 . . . 4  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  N  e.  NN )
3 poimirlem22.s . . . 4  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
4 poimirlem22.1 . . . . 5  |-  ( ph  ->  F : ( 0 ... ( N  - 
1 ) ) --> ( ( 0 ... K
)  ^m  ( 1 ... N ) ) )
54adantr 481 . . . 4  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  F :
( 0 ... ( N  -  1 ) ) --> ( ( 0 ... K )  ^m  ( 1 ... N
) ) )
6 poimirlem22.2 . . . . 5  |-  ( ph  ->  T  e.  S )
76adantr 481 . . . 4  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  T  e.  S )
8 simpr 477 . . . 4  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )
92, 3, 5, 7, 8poimirlem15 33424 . . 3  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  <. <. ( 1st `  ( 1st `  T
) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
>. ,  ( 2nd `  T ) >.  e.  S
)
10 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( t  =  T  ->  ( 2nd `  t )  =  ( 2nd `  T
) )
1110breq2d 4665 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  =  T  ->  (
y  <  ( 2nd `  t )  <->  y  <  ( 2nd `  T ) ) )
1211ifbid 4108 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( t  =  T  ->  if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  =  if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) ) )
1312csbeq1d 3540 . . . . . . . . . . . . . . . . . . . . 21  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
14 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( t  =  T  ->  ( 1st `  t )  =  ( 1st `  T
) )
1514fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  =  T  ->  ( 1st `  ( 1st `  t
) )  =  ( 1st `  ( 1st `  T ) ) )
1614fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( t  =  T  ->  ( 2nd `  ( 1st `  t
) )  =  ( 2nd `  ( 1st `  T ) ) )
1716imaeq1d 5465 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) ) )
1817xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( t  =  T  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... j
) )  X.  {
1 } ) )
1916imaeq1d 5465 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) ) )
2019xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( t  =  T  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) )
2118, 20uneq12d 3768 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  =  T  ->  (
( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )
2215, 21oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( t  =  T  ->  (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
2322csbeq2dv 3992 . . . . . . . . . . . . . . . . . . . . 21  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
2413, 23eqtrd 2656 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
2524mpteq2dv 4745 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  T  ->  (
y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
2625eqeq2d 2632 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  T  ->  ( F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
2726, 3elrab2 3366 . . . . . . . . . . . . . . . . 17  |-  ( T  e.  S  <->  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
2827simprbi 480 . . . . . . . . . . . . . . . 16  |-  ( T  e.  S  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
296, 28syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
3029adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
31 elrabi 3359 . . . . . . . . . . . . . . . . . . . . 21  |-  ( T  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  ->  T  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
3231, 3eleq2s 2719 . . . . . . . . . . . . . . . . . . . 20  |-  ( T  e.  S  ->  T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
336, 32syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
34 xp1st 7198 . . . . . . . . . . . . . . . . . . 19  |-  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
3533, 34syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 1st `  T
)  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )
36 xp1st 7198 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
3735, 36syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
38 elmapi 7879 . . . . . . . . . . . . . . . . 17  |-  ( ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 0..^ K ) )
3937, 38syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 0..^ K ) )
40 elfzoelz 12470 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( 0..^ K )  ->  n  e.  ZZ )
4140ssriv 3607 . . . . . . . . . . . . . . . 16  |-  ( 0..^ K )  C_  ZZ
42 fss 6056 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 0..^ K )  /\  (
0..^ K )  C_  ZZ )  ->  ( 1st `  ( 1st `  T
) ) : ( 1 ... N ) --> ZZ )
4339, 41, 42sylancl 694 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ZZ )
4443adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( 1st `  ( 1st `  T
) ) : ( 1 ... N ) --> ZZ )
45 xp2nd 7199 . . . . . . . . . . . . . . . . 17  |-  ( ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 2nd `  ( 1st `  T ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
4635, 45syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
47 fvex 6201 . . . . . . . . . . . . . . . . 17  |-  ( 2nd `  ( 1st `  T
) )  e.  _V
48 f1oeq1 6127 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( 2nd `  ( 1st `  T ) )  ->  ( f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) ) )
4947, 48elab 3350 . . . . . . . . . . . . . . . 16  |-  ( ( 2nd `  ( 1st `  T ) )  e. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) }  <->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
5046, 49sylib 208 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )
5150adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
522, 30, 44, 51, 8poimirlem1 33410 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  -.  E* n  e.  ( 1 ... N
) ( ( F `
 ( ( 2nd `  T )  -  1 ) ) `  n
)  =/=  ( ( F `  ( 2nd `  T ) ) `  n ) )
5352adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  ->  -.  E* n  e.  (
1 ... N ) ( ( F `  (
( 2nd `  T
)  -  1 ) ) `  n )  =/=  ( ( F `
 ( 2nd `  T
) ) `  n
) )
541ad3antrrr 766 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  /\  ( 2nd `  z
)  =/=  ( 2nd `  T ) )  ->  N  e.  NN )
55 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( t  =  z  ->  ( 2nd `  t )  =  ( 2nd `  z
) )
5655breq2d 4665 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  =  z  ->  (
y  <  ( 2nd `  t )  <->  y  <  ( 2nd `  z ) ) )
5756ifbid 4108 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( t  =  z  ->  if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  =  if ( y  <  ( 2nd `  z
) ,  y ,  ( y  +  1 ) ) )
5857csbeq1d 3540 . . . . . . . . . . . . . . . . . . . . 21  |-  ( t  =  z  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  z ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
59 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( t  =  z  ->  ( 1st `  t )  =  ( 1st `  z
) )
6059fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  =  z  ->  ( 1st `  ( 1st `  t
) )  =  ( 1st `  ( 1st `  z ) ) )
6159fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( t  =  z  ->  ( 2nd `  ( 1st `  t
) )  =  ( 2nd `  ( 1st `  z ) ) )
6261imaeq1d 5465 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( t  =  z  ->  (
( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  z ) )
" ( 1 ... j ) ) )
6362xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( t  =  z  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  z ) ) "
( 1 ... j
) )  X.  {
1 } ) )
6461imaeq1d 5465 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( t  =  z  ->  (
( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) ) )
6564xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( t  =  z  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  z ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) )
6663, 65uneq12d 3768 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  =  z  ->  (
( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  z ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )
6760, 66oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( t  =  z  ->  (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  z ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
6867csbeq2dv 3992 . . . . . . . . . . . . . . . . . . . . 21  |-  ( t  =  z  ->  [_ if ( y  <  ( 2nd `  z ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  z ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  z ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
6958, 68eqtrd 2656 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  z  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  z ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  z ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
7069mpteq2dv 4745 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  z  ->  (
y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  z
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  z ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
7170eqeq2d 2632 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  z  ->  ( F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  z
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  z ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
7271, 3elrab2 3366 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  S  <->  ( z  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  z
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  z ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
7372simprbi 480 . . . . . . . . . . . . . . . 16  |-  ( z  e.  S  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  z
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  z ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
7473ad2antlr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  /\  ( 2nd `  z
)  =/=  ( 2nd `  T ) )  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  z
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  z ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
75 elrabi 3359 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  ->  z  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
7675, 3eleq2s 2719 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  S  ->  z  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
77 xp1st 7198 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 1st `  z )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
7876, 77syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  S  ->  ( 1st `  z )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
79 xp1st 7198 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1st `  z )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 1st `  ( 1st `  z ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
8078, 79syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  S  ->  ( 1st `  ( 1st `  z
) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) ) )
81 elmapi 7879 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1st `  ( 1st `  z ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  z ) ) : ( 1 ... N ) --> ( 0..^ K ) )
8280, 81syl 17 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  S  ->  ( 1st `  ( 1st `  z
) ) : ( 1 ... N ) --> ( 0..^ K ) )
83 fss 6056 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1st `  ( 1st `  z ) ) : ( 1 ... N ) --> ( 0..^ K )  /\  (
0..^ K )  C_  ZZ )  ->  ( 1st `  ( 1st `  z
) ) : ( 1 ... N ) --> ZZ )
8482, 41, 83sylancl 694 . . . . . . . . . . . . . . . 16  |-  ( z  e.  S  ->  ( 1st `  ( 1st `  z
) ) : ( 1 ... N ) --> ZZ )
8584ad2antlr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  /\  ( 2nd `  z
)  =/=  ( 2nd `  T ) )  -> 
( 1st `  ( 1st `  z ) ) : ( 1 ... N ) --> ZZ )
86 xp2nd 7199 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1st `  z )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 2nd `  ( 1st `  z ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
8778, 86syl 17 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  S  ->  ( 2nd `  ( 1st `  z
) )  e.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )
88 fvex 6201 . . . . . . . . . . . . . . . . . 18  |-  ( 2nd `  ( 1st `  z
) )  e.  _V
89 f1oeq1 6127 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( 2nd `  ( 1st `  z ) )  ->  ( f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( 2nd `  ( 1st `  z ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) ) )
9088, 89elab 3350 . . . . . . . . . . . . . . . . 17  |-  ( ( 2nd `  ( 1st `  z ) )  e. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) }  <->  ( 2nd `  ( 1st `  z
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
9187, 90sylib 208 . . . . . . . . . . . . . . . 16  |-  ( z  e.  S  ->  ( 2nd `  ( 1st `  z
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
9291ad2antlr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  /\  ( 2nd `  z
)  =/=  ( 2nd `  T ) )  -> 
( 2nd `  ( 1st `  z ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )
93 simpllr 799 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  /\  ( 2nd `  z
)  =/=  ( 2nd `  T ) )  -> 
( 2nd `  T
)  e.  ( 1 ... ( N  - 
1 ) ) )
94 xp2nd 7199 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 2nd `  z )  e.  ( 0 ... N
) )
9576, 94syl 17 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  S  ->  ( 2nd `  z )  e.  ( 0 ... N
) )
9695adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  ->  ( 2nd `  z )  e.  ( 0 ... N
) )
97 eldifsn 4317 . . . . . . . . . . . . . . . . 17  |-  ( ( 2nd `  z )  e.  ( ( 0 ... N )  \  { ( 2nd `  T
) } )  <->  ( ( 2nd `  z )  e.  ( 0 ... N
)  /\  ( 2nd `  z )  =/=  ( 2nd `  T ) ) )
9897biimpri 218 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2nd `  z
)  e.  ( 0 ... N )  /\  ( 2nd `  z )  =/=  ( 2nd `  T
) )  ->  ( 2nd `  z )  e.  ( ( 0 ... N )  \  {
( 2nd `  T
) } ) )
9996, 98sylan 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  /\  ( 2nd `  z
)  =/=  ( 2nd `  T ) )  -> 
( 2nd `  z
)  e.  ( ( 0 ... N ) 
\  { ( 2nd `  T ) } ) )
10054, 74, 85, 92, 93, 99poimirlem2 33411 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  /\  ( 2nd `  z
)  =/=  ( 2nd `  T ) )  ->  E* n  e.  (
1 ... N ) ( ( F `  (
( 2nd `  T
)  -  1 ) ) `  n )  =/=  ( ( F `
 ( 2nd `  T
) ) `  n
) )
101100ex 450 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  ->  (
( 2nd `  z
)  =/=  ( 2nd `  T )  ->  E* n  e.  ( 1 ... N ) ( ( F `  (
( 2nd `  T
)  -  1 ) ) `  n )  =/=  ( ( F `
 ( 2nd `  T
) ) `  n
) ) )
102101necon1bd 2812 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  ->  ( -.  E* n  e.  ( 1 ... N ) ( ( F `  ( ( 2nd `  T
)  -  1 ) ) `  n )  =/=  ( ( F `
 ( 2nd `  T
) ) `  n
)  ->  ( 2nd `  z )  =  ( 2nd `  T ) ) )
10353, 102mpd 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  ->  ( 2nd `  z )  =  ( 2nd `  T
) )
104 eleq1 2689 . . . . . . . . . . . . . . . 16  |-  ( ( 2nd `  z )  =  ( 2nd `  T
)  ->  ( ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) )  <->  ( 2nd `  T
)  e.  ( 1 ... ( N  - 
1 ) ) ) )
105104biimparc 504 . . . . . . . . . . . . . . 15  |-  ( ( ( 2nd `  T
)  e.  ( 1 ... ( N  - 
1 ) )  /\  ( 2nd `  z )  =  ( 2nd `  T
) )  ->  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )
106105anim2i 593 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) )  /\  ( 2nd `  z )  =  ( 2nd `  T ) ) )  ->  ( ph  /\  ( 2nd `  z
)  e.  ( 1 ... ( N  - 
1 ) ) ) )
107106anassrs 680 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  ( 2nd `  z )  =  ( 2nd `  T
) )  ->  ( ph  /\  ( 2nd `  z
)  e.  ( 1 ... ( N  - 
1 ) ) ) )
10873adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  z
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  z ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
109 breq1 4656 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  0  ->  (
y  <  ( 2nd `  z )  <->  0  <  ( 2nd `  z ) ) )
110 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  0  ->  y  =  0 )
111109, 110ifbieq1d 4109 . . . . . . . . . . . . . . . . 17  |-  ( y  =  0  ->  if ( y  <  ( 2nd `  z ) ,  y ,  ( y  +  1 ) )  =  if ( 0  <  ( 2nd `  z
) ,  0 ,  ( y  +  1 ) ) )
112 elfznn 12370 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) )  ->  ( 2nd `  z )  e.  NN )
113112nngt0d 11064 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) )  ->  0  <  ( 2nd `  z
) )
114113iftrued 4094 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) )  ->  if ( 0  <  ( 2nd `  z ) ,  0 ,  ( y  +  1 ) )  =  0 )
115114ad2antlr 763 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  ->  if ( 0  <  ( 2nd `  z ) ,  0 ,  ( y  +  1 ) )  =  0 )
116111, 115sylan9eqr 2678 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  /\  y  =  0
)  ->  if (
y  <  ( 2nd `  z ) ,  y ,  ( y  +  1 ) )  =  0 )
117116csbeq1d 3540 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  /\  y  =  0
)  ->  [_ if ( y  <  ( 2nd `  z ) ,  y ,  ( y  +  1 ) )  / 
j ]_ ( ( 1st `  ( 1st `  z
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  z ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )  =  [_ 0  /  j ]_ (
( 1st `  ( 1st `  z ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
118 c0ex 10034 . . . . . . . . . . . . . . . . . 18  |-  0  e.  _V
119 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  =  0  ->  (
1 ... j )  =  ( 1 ... 0
) )
120 fz10 12362 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 1 ... 0 )  =  (/)
121119, 120syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  =  0  ->  (
1 ... j )  =  (/) )
122121imaeq2d 5466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  =  0  ->  (
( 2nd `  ( 1st `  z ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  z ) )
" (/) ) )
123122xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  =  0  ->  (
( ( 2nd `  ( 1st `  z ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  z ) ) " (/) )  X.  { 1 } ) )
124 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( j  =  0  ->  (
j  +  1 )  =  ( 0  +  1 ) )
125 0p1e1 11132 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 0  +  1 )  =  1
126124, 125syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  =  0  ->  (
j  +  1 )  =  1 )
127126oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  =  0  ->  (
( j  +  1 ) ... N )  =  ( 1 ... N ) )
128127imaeq2d 5466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  =  0  ->  (
( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  z ) )
" ( 1 ... N ) ) )
129128xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  =  0  ->  (
( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  z ) ) "
( 1 ... N
) )  X.  {
0 } ) )
130123, 129uneq12d 3768 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  =  0  ->  (
( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  z ) )
" (/) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... N ) )  X.  { 0 } ) ) )
131 ima0 5481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 2nd `  ( 1st `  z ) ) " (/) )  =  (/)
132131xpeq1i 5135 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( 2nd `  ( 1st `  z ) )
" (/) )  X.  {
1 } )  =  ( (/)  X.  { 1 } )
133 0xp 5199 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (/)  X. 
{ 1 } )  =  (/)
134132, 133eqtri 2644 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( 2nd `  ( 1st `  z ) )
" (/) )  X.  {
1 } )  =  (/)
135134uneq1i 3763 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( 2nd `  ( 1st `  z ) )
" (/) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... N ) )  X.  { 0 } ) )  =  (
(/)  u.  ( (
( 2nd `  ( 1st `  z ) )
" ( 1 ... N ) )  X. 
{ 0 } ) )
136 uncom 3757 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (/)  u.  ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... N ) )  X.  { 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... N ) )  X.  { 0 } )  u.  (/) )
137 un0 3967 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( 2nd `  ( 1st `  z ) )
" ( 1 ... N ) )  X. 
{ 0 } )  u.  (/) )  =  ( ( ( 2nd `  ( 1st `  z ) )
" ( 1 ... N ) )  X. 
{ 0 } )
138135, 136, 1373eqtri 2648 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( 2nd `  ( 1st `  z ) )
" (/) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... N ) )  X.  { 0 } ) )  =  ( ( ( 2nd `  ( 1st `  z ) )
" ( 1 ... N ) )  X. 
{ 0 } )
139130, 138syl6eq 2672 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  0  ->  (
( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( 2nd `  ( 1st `  z ) )
" ( 1 ... N ) )  X. 
{ 0 } ) )
140139oveq2d 6666 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  0  ->  (
( 1st `  ( 1st `  z ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  z ) )  oF  +  ( ( ( 2nd `  ( 1st `  z ) )
" ( 1 ... N ) )  X. 
{ 0 } ) ) )
141118, 140csbie 3559 . . . . . . . . . . . . . . . . 17  |-  [_ 0  /  j ]_ (
( 1st `  ( 1st `  z ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  z ) )  oF  +  ( ( ( 2nd `  ( 1st `  z ) )
" ( 1 ... N ) )  X. 
{ 0 } ) )
142 f1ofo 6144 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2nd `  ( 1st `  z ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  z
) ) : ( 1 ... N )
-onto-> ( 1 ... N
) )
14391, 142syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  S  ->  ( 2nd `  ( 1st `  z
) ) : ( 1 ... N )
-onto-> ( 1 ... N
) )
144 foima 6120 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2nd `  ( 1st `  z ) ) : ( 1 ... N
) -onto-> ( 1 ... N )  ->  (
( 2nd `  ( 1st `  z ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
145143, 144syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  S  ->  (
( 2nd `  ( 1st `  z ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
146145xpeq1d 5138 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  S  ->  (
( ( 2nd `  ( 1st `  z ) )
" ( 1 ... N ) )  X. 
{ 0 } )  =  ( ( 1 ... N )  X. 
{ 0 } ) )
147146oveq2d 6666 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  S  ->  (
( 1st `  ( 1st `  z ) )  oF  +  ( ( ( 2nd `  ( 1st `  z ) )
" ( 1 ... N ) )  X. 
{ 0 } ) )  =  ( ( 1st `  ( 1st `  z ) )  oF  +  ( ( 1 ... N )  X.  { 0 } ) ) )
148 ovexd 6680 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  S  ->  (
1 ... N )  e. 
_V )
149 ffn 6045 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1st `  ( 1st `  z ) ) : ( 1 ... N
) --> ( 0..^ K )  ->  ( 1st `  ( 1st `  z
) )  Fn  (
1 ... N ) )
15082, 149syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  S  ->  ( 1st `  ( 1st `  z
) )  Fn  (
1 ... N ) )
151 fnconstg 6093 . . . . . . . . . . . . . . . . . . . 20  |-  ( 0  e.  _V  ->  (
( 1 ... N
)  X.  { 0 } )  Fn  (
1 ... N ) )
152118, 151mp1i 13 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  S  ->  (
( 1 ... N
)  X.  { 0 } )  Fn  (
1 ... N ) )
153 eqidd 2623 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  S  /\  n  e.  ( 1 ... N ) )  ->  ( ( 1st `  ( 1st `  z
) ) `  n
)  =  ( ( 1st `  ( 1st `  z ) ) `  n ) )
154118fvconst2 6469 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  ( 1 ... N )  ->  (
( ( 1 ... N )  X.  {
0 } ) `  n )  =  0 )
155154adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  S  /\  n  e.  ( 1 ... N ) )  ->  ( ( ( 1 ... N )  X.  { 0 } ) `  n )  =  0 )
15682ffvelrnda 6359 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  e.  S  /\  n  e.  ( 1 ... N ) )  ->  ( ( 1st `  ( 1st `  z
) ) `  n
)  e.  ( 0..^ K ) )
157 elfzonn0 12512 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( 1st `  ( 1st `  z ) ) `
 n )  e.  ( 0..^ K )  ->  ( ( 1st `  ( 1st `  z
) ) `  n
)  e.  NN0 )
158156, 157syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  e.  S  /\  n  e.  ( 1 ... N ) )  ->  ( ( 1st `  ( 1st `  z
) ) `  n
)  e.  NN0 )
159158nn0cnd 11353 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  S  /\  n  e.  ( 1 ... N ) )  ->  ( ( 1st `  ( 1st `  z
) ) `  n
)  e.  CC )
160159addid1d 10236 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  S  /\  n  e.  ( 1 ... N ) )  ->  ( ( ( 1st `  ( 1st `  z ) ) `  n )  +  0 )  =  ( ( 1st `  ( 1st `  z ) ) `  n ) )
161148, 150, 152, 150, 153, 155, 160offveq 6918 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  S  ->  (
( 1st `  ( 1st `  z ) )  oF  +  ( ( 1 ... N
)  X.  { 0 } ) )  =  ( 1st `  ( 1st `  z ) ) )
162147, 161eqtrd 2656 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  S  ->  (
( 1st `  ( 1st `  z ) )  oF  +  ( ( ( 2nd `  ( 1st `  z ) )
" ( 1 ... N ) )  X. 
{ 0 } ) )  =  ( 1st `  ( 1st `  z
) ) )
163141, 162syl5eq 2668 . . . . . . . . . . . . . . . 16  |-  ( z  e.  S  ->  [_ 0  /  j ]_ (
( 1st `  ( 1st `  z ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( 1st `  ( 1st `  z ) ) )
164163ad2antlr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  /\  y  =  0
)  ->  [_ 0  /  j ]_ (
( 1st `  ( 1st `  z ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  z
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( 1st `  ( 1st `  z ) ) )
165117, 164eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  /\  y  =  0
)  ->  [_ if ( y  <  ( 2nd `  z ) ,  y ,  ( y  +  1 ) )  / 
j ]_ ( ( 1st `  ( 1st `  z
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  z ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  z ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )  =  ( 1st `  ( 1st `  z
) ) )
166 nnm1nn0 11334 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
1671, 166syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( N  -  1 )  e.  NN0 )
168 0elfz 12436 . . . . . . . . . . . . . . . 16  |-  ( ( N  -  1 )  e.  NN0  ->  0  e.  ( 0 ... ( N  -  1 ) ) )
169167, 168syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  0  e.  ( 0 ... ( N  - 
1 ) ) )
170169ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  ->  0  e.  ( 0 ... ( N  -  1 ) ) )
171 fvexd 6203 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  ->  ( 1st `  ( 1st `  z
) )  e.  _V )
172108, 165, 170, 171fvmptd 6288 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  ->  ( F `  0 )  =  ( 1st `  ( 1st `  z ) ) )
173107, 172sylan 488 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  ( 2nd `  z )  =  ( 2nd `  T
) )  /\  z  e.  S )  ->  ( F `  0 )  =  ( 1st `  ( 1st `  z ) ) )
174173an32s 846 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  /\  ( 2nd `  z
)  =  ( 2nd `  T ) )  -> 
( F `  0
)  =  ( 1st `  ( 1st `  z
) ) )
175103, 174mpdan 702 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  ->  ( F `  0 )  =  ( 1st `  ( 1st `  z ) ) )
176 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( z  =  T  ->  ( 2nd `  z )  =  ( 2nd `  T
) )
177176eleq1d 2686 . . . . . . . . . . . . . . 15  |-  ( z  =  T  ->  (
( 2nd `  z
)  e.  ( 1 ... ( N  - 
1 ) )  <->  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) ) )
178177anbi2d 740 . . . . . . . . . . . . . 14  |-  ( z  =  T  ->  (
( ph  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  <->  ( ph  /\  ( 2nd `  T
)  e.  ( 1 ... ( N  - 
1 ) ) ) ) )
179 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( z  =  T  ->  ( 1st `  z )  =  ( 1st `  T
) )
180179fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( z  =  T  ->  ( 1st `  ( 1st `  z
) )  =  ( 1st `  ( 1st `  T ) ) )
181180eqeq2d 2632 . . . . . . . . . . . . . 14  |-  ( z  =  T  ->  (
( F `  0
)  =  ( 1st `  ( 1st `  z
) )  <->  ( F `  0 )  =  ( 1st `  ( 1st `  T ) ) ) )
182178, 181imbi12d 334 . . . . . . . . . . . . 13  |-  ( z  =  T  ->  (
( ( ph  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  -> 
( F `  0
)  =  ( 1st `  ( 1st `  z
) ) )  <->  ( ( ph  /\  ( 2nd `  T
)  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( F ` 
0 )  =  ( 1st `  ( 1st `  T ) ) ) ) )
183172expcom 451 . . . . . . . . . . . . 13  |-  ( z  e.  S  ->  (
( ph  /\  ( 2nd `  z )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( F `  0 )  =  ( 1st `  ( 1st `  z ) ) ) )
184182, 183vtoclga 3272 . . . . . . . . . . . 12  |-  ( T  e.  S  ->  (
( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( F `  0 )  =  ( 1st `  ( 1st `  T ) ) ) )
1857, 184mpcom 38 . . . . . . . . . . 11  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( F `  0 )  =  ( 1st `  ( 1st `  T ) ) )
186185adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  ->  ( F `  0 )  =  ( 1st `  ( 1st `  T ) ) )
187175, 186eqtr3d 2658 . . . . . . . . 9  |-  ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  ->  ( 1st `  ( 1st `  z
) )  =  ( 1st `  ( 1st `  T ) ) )
188187adantr 481 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  /\  z  =/=  T
)  ->  ( 1st `  ( 1st `  z
) )  =  ( 1st `  ( 1st `  T ) ) )
1891ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  /\  z  =/=  T
)  ->  N  e.  NN )
1906ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  /\  z  =/=  T
)  ->  T  e.  S )
191 simpllr 799 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  /\  z  =/=  T
)  ->  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )
192 simplr 792 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  /\  z  =/=  T
)  ->  z  e.  S )
19335adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
194 xpopth 7207 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  z
)  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } ) )  ->  ( ( ( 1st `  ( 1st `  z ) )  =  ( 1st `  ( 1st `  T ) )  /\  ( 2nd `  ( 1st `  z ) )  =  ( 2nd `  ( 1st `  T ) ) )  <->  ( 1st `  z
)  =  ( 1st `  T ) ) )
19578, 193, 194syl2anr 495 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  ->  (
( ( 1st `  ( 1st `  z ) )  =  ( 1st `  ( 1st `  T ) )  /\  ( 2nd `  ( 1st `  z ) )  =  ( 2nd `  ( 1st `  T ) ) )  <->  ( 1st `  z
)  =  ( 1st `  T ) ) )
19633adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
197 xpopth 7207 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  T  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )  ->  ( (
( 1st `  z
)  =  ( 1st `  T )  /\  ( 2nd `  z )  =  ( 2nd `  T
) )  <->  z  =  T ) )
198197biimpd 219 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  T  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )  ->  ( (
( 1st `  z
)  =  ( 1st `  T )  /\  ( 2nd `  z )  =  ( 2nd `  T
) )  ->  z  =  T ) )
19976, 196, 198syl2anr 495 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  ->  (
( ( 1st `  z
)  =  ( 1st `  T )  /\  ( 2nd `  z )  =  ( 2nd `  T
) )  ->  z  =  T ) )
200103, 199mpan2d 710 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  ->  (
( 1st `  z
)  =  ( 1st `  T )  ->  z  =  T ) )
201195, 200sylbid 230 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  ->  (
( ( 1st `  ( 1st `  z ) )  =  ( 1st `  ( 1st `  T ) )  /\  ( 2nd `  ( 1st `  z ) )  =  ( 2nd `  ( 1st `  T ) ) )  ->  z  =  T ) )
202187, 201mpand 711 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  ->  (
( 2nd `  ( 1st `  z ) )  =  ( 2nd `  ( 1st `  T ) )  ->  z  =  T ) )
203202necon3d 2815 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  ->  (
z  =/=  T  -> 
( 2nd `  ( 1st `  z ) )  =/=  ( 2nd `  ( 1st `  T ) ) ) )
204203imp 445 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  /\  z  =/=  T
)  ->  ( 2nd `  ( 1st `  z
) )  =/=  ( 2nd `  ( 1st `  T
) ) )
205189, 3, 190, 191, 192, 204poimirlem9 33418 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  /\  z  =/=  T
)  ->  ( 2nd `  ( 1st `  z
) )  =  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) ) )
206103adantr 481 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  /\  z  =/=  T
)  ->  ( 2nd `  z )  =  ( 2nd `  T ) )
207188, 205, 206jca31 557 . . . . . . 7  |-  ( ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  /\  z  =/=  T
)  ->  ( (
( 1st `  ( 1st `  z ) )  =  ( 1st `  ( 1st `  T ) )  /\  ( 2nd `  ( 1st `  z ) )  =  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) )  /\  ( 2nd `  z )  =  ( 2nd `  T
) ) )
208207ex 450 . . . . . 6  |-  ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  ->  (
z  =/=  T  -> 
( ( ( 1st `  ( 1st `  z
) )  =  ( 1st `  ( 1st `  T ) )  /\  ( 2nd `  ( 1st `  z ) )  =  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) ) )  /\  ( 2nd `  z )  =  ( 2nd `  T ) ) ) )
209 simplr 792 . . . . . . . 8  |-  ( ( ( ( 1st `  ( 1st `  z ) )  =  ( 1st `  ( 1st `  T ) )  /\  ( 2nd `  ( 1st `  z ) )  =  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) )  /\  ( 2nd `  z )  =  ( 2nd `  T
) )  ->  ( 2nd `  ( 1st `  z
) )  =  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) ) )
210 elfznn 12370 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) )  ->  ( 2nd `  T )  e.  NN )
211210nnred 11035 . . . . . . . . . . . . 13  |-  ( ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) )  ->  ( 2nd `  T )  e.  RR )
212211ltp1d 10954 . . . . . . . . . . . . 13  |-  ( ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) )  ->  ( 2nd `  T )  < 
( ( 2nd `  T
)  +  1 ) )
213211, 212ltned 10173 . . . . . . . . . . . 12  |-  ( ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) )  ->  ( 2nd `  T )  =/=  ( ( 2nd `  T
)  +  1 ) )
214213adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( 2nd `  T )  =/=  (
( 2nd `  T
)  +  1 ) )
215 fveq1 6190 . . . . . . . . . . . . 13  |-  ( ( 2nd `  ( 1st `  T ) )  =  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )  ->  ( ( 2nd `  ( 1st `  T
) ) `  ( 2nd `  T ) )  =  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) ) `
 ( 2nd `  T
) ) )
216 id 22 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2nd `  T )  e.  RR  ->  ( 2nd `  T )  e.  RR )
217 ltp1 10861 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2nd `  T )  e.  RR  ->  ( 2nd `  T )  < 
( ( 2nd `  T
)  +  1 ) )
218216, 217ltned 10173 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2nd `  T )  e.  RR  ->  ( 2nd `  T )  =/=  ( ( 2nd `  T
)  +  1 ) )
219 fvex 6201 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2nd `  T )  e.  _V
220 ovex 6678 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2nd `  T )  +  1 )  e. 
_V
221219, 220, 220, 219fpr 6421 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2nd `  T )  =/=  ( ( 2nd `  T )  +  1 )  ->  { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. } : {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } --> { ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) } )
222218, 221syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2nd `  T )  e.  RR  ->  { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. } : {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } --> { ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) } )
223 f1oi 6174 . . . . . . . . . . . . . . . . . . . . 21  |-  (  _I  |`  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) : ( ( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) -1-1-onto-> ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )
224 f1of 6137 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (  _I  |`  ( (
1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) : ( ( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) -1-1-onto-> ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  ->  (  _I  |`  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) : ( ( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) --> ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) )
225223, 224ax-mp 5 . . . . . . . . . . . . . . . . . . . 20  |-  (  _I  |`  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) : ( ( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) --> ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } )
226 disjdif 4040 . . . . . . . . . . . . . . . . . . . . 21  |-  ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  i^i  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  =  (/)
227 fun 6066 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. } : {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } --> { ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) }  /\  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) : ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) --> ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  /\  ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  i^i  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  =  (/) )  ->  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) : ( { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) }  u.  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) --> ( { ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) }  u.  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) )
228226, 227mpan2 707 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } : { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } --> { ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) }  /\  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) : ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) --> ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  ->  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) : ( { ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) }  u.  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) --> ( { ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) }  u.  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) )
229222, 225, 228sylancl 694 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2nd `  T )  e.  RR  ->  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) : ( { ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) }  u.  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) --> ( { ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) }  u.  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) )
230219prid1 4297 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2nd `  T )  e.  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }
231 elun1 3780 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2nd `  T )  e.  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) }  ->  ( 2nd `  T )  e.  ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  u.  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) )
232230, 231ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( 2nd `  T )  e.  ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  u.  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )
233 fvco3 6275 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) : ( { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) }  u.  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) --> ( { ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) }  u.  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  /\  ( 2nd `  T )  e.  ( { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) }  u.  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) )  ->  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) ) `
 ( 2nd `  T
) )  =  ( ( 2nd `  ( 1st `  T ) ) `
 ( ( {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) `
 ( 2nd `  T
) ) ) )
234229, 232, 233sylancl 694 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2nd `  T )  e.  RR  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) ) `
 ( 2nd `  T
) )  =  ( ( 2nd `  ( 1st `  T ) ) `
 ( ( {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) `
 ( 2nd `  T
) ) ) )
235 ffn 6045 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } : { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } --> { ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) }  ->  {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  Fn  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )
236222, 235syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2nd `  T )  e.  RR  ->  { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  Fn  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )
237 fnresi 6008 . . . . . . . . . . . . . . . . . . . . . 22  |-  (  _I  |`  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  Fn  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } )
238226, 230pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  i^i  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  =  (/)  /\  ( 2nd `  T
)  e.  { ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) } )
239 fvun1 6269 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  Fn  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  /\  (  _I  |`  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) )  Fn  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  /\  ( ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  i^i  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  =  (/)  /\  ( 2nd `  T
)  e.  { ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) } ) )  ->  ( ( {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) `
 ( 2nd `  T
) )  =  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } `  ( 2nd `  T ) ) )
240237, 238, 239mp3an23 1416 . . . . . . . . . . . . . . . . . . . . 21  |-  ( {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  Fn  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  ->  ( ( {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) `
 ( 2nd `  T
) )  =  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } `  ( 2nd `  T ) ) )
241236, 240syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2nd `  T )  e.  RR  ->  (
( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) `  ( 2nd `  T ) )  =  ( {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } `  ( 2nd `  T ) ) )
242219, 220fvpr1 6456 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2nd `  T )  =/=  ( ( 2nd `  T )  +  1 )  ->  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } `  ( 2nd `  T ) )  =  ( ( 2nd `  T )  +  1 ) )
243218, 242syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2nd `  T )  e.  RR  ->  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } `  ( 2nd `  T ) )  =  ( ( 2nd `  T )  +  1 ) )
244241, 243eqtrd 2656 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2nd `  T )  e.  RR  ->  (
( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) `  ( 2nd `  T ) )  =  ( ( 2nd `  T )  +  1 ) )
245244fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2nd `  T )  e.  RR  ->  (
( 2nd `  ( 1st `  T ) ) `
 ( ( {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) `
 ( 2nd `  T
) ) )  =  ( ( 2nd `  ( 1st `  T ) ) `
 ( ( 2nd `  T )  +  1 ) ) )
246234, 245eqtrd 2656 . . . . . . . . . . . . . . . . 17  |-  ( ( 2nd `  T )  e.  RR  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) ) `
 ( 2nd `  T
) )  =  ( ( 2nd `  ( 1st `  T ) ) `
 ( ( 2nd `  T )  +  1 ) ) )
247211, 246syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) ) `
 ( 2nd `  T
) )  =  ( ( 2nd `  ( 1st `  T ) ) `
 ( ( 2nd `  T )  +  1 ) ) )
248247eqeq2d 2632 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) )  ->  (
( ( 2nd `  ( 1st `  T ) ) `
 ( 2nd `  T
) )  =  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) ) `
 ( 2nd `  T
) )  <->  ( ( 2nd `  ( 1st `  T
) ) `  ( 2nd `  T ) )  =  ( ( 2nd `  ( 1st `  T
) ) `  (
( 2nd `  T
)  +  1 ) ) ) )
249248adantl 482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( (
( 2nd `  ( 1st `  T ) ) `
 ( 2nd `  T
) )  =  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) ) `
 ( 2nd `  T
) )  <->  ( ( 2nd `  ( 1st `  T
) ) `  ( 2nd `  T ) )  =  ( ( 2nd `  ( 1st `  T
) ) `  (
( 2nd `  T
)  +  1 ) ) ) )
250 f1of1 6136 . . . . . . . . . . . . . . . . 17  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N )
-1-1-> ( 1 ... N
) )
25150, 250syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-> ( 1 ... N ) )
252251adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N )
-1-1-> ( 1 ... N
) )
2531nncnd 11036 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  N  e.  CC )
254 npcan1 10455 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  CC  ->  (
( N  -  1 )  +  1 )  =  N )
255253, 254syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
256167nn0zd 11480 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
257 uzid 11702 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  -  1 )  e.  ZZ  ->  ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
258256, 257syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1
) ) )
259 peano2uz 11741 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
260258, 259syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1
) ) )
261255, 260eqeltrrd 2702 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  e.  ( ZZ>= `  ( N  -  1
) ) )
262 fzss2 12381 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( 1 ... ( N  - 
1 ) )  C_  ( 1 ... N
) )
263261, 262syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1 ... ( N  -  1 ) )  C_  ( 1 ... N ) )
264263sselda 3603 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( 2nd `  T )  e.  ( 1 ... N ) )
265 fzp1elp1 12394 . . . . . . . . . . . . . . . . 17  |-  ( ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) )  ->  (
( 2nd `  T
)  +  1 )  e.  ( 1 ... ( ( N  - 
1 )  +  1 ) ) )
266265adantl 482 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( ( 2nd `  T )  +  1 )  e.  ( 1 ... ( ( N  -  1 )  +  1 ) ) )
267255oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 1 ... (
( N  -  1 )  +  1 ) )  =  ( 1 ... N ) )
268267adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( 1 ... ( ( N  -  1 )  +  1 ) )  =  ( 1 ... N
) )
269266, 268eleqtrd 2703 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( ( 2nd `  T )  +  1 )  e.  ( 1 ... N ) )
270 f1veqaeq 6514 . . . . . . . . . . . . . . 15  |-  ( ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-> ( 1 ... N )  /\  ( ( 2nd `  T
)  e.  ( 1 ... N )  /\  ( ( 2nd `  T
)  +  1 )  e.  ( 1 ... N ) ) )  ->  ( ( ( 2nd `  ( 1st `  T ) ) `  ( 2nd `  T ) )  =  ( ( 2nd `  ( 1st `  T ) ) `  ( ( 2nd `  T
)  +  1 ) )  ->  ( 2nd `  T )  =  ( ( 2nd `  T
)  +  1 ) ) )
271252, 264, 269, 270syl12anc 1324 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( (
( 2nd `  ( 1st `  T ) ) `
 ( 2nd `  T
) )  =  ( ( 2nd `  ( 1st `  T ) ) `
 ( ( 2nd `  T )  +  1 ) )  ->  ( 2nd `  T )  =  ( ( 2nd `  T
)  +  1 ) ) )
272249, 271sylbid 230 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( (
( 2nd `  ( 1st `  T ) ) `
 ( 2nd `  T
) )  =  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) ) `
 ( 2nd `  T
) )  ->  ( 2nd `  T )  =  ( ( 2nd `  T
)  +  1 ) ) )
273215, 272syl5 34 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( ( 2nd `  ( 1st `  T
) )  =  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )  ->  ( 2nd `  T
)  =  ( ( 2nd `  T )  +  1 ) ) )
274273necon3d 2815 . . . . . . . . . . 11  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( ( 2nd `  T )  =/=  ( ( 2nd `  T
)  +  1 )  ->  ( 2nd `  ( 1st `  T ) )  =/=  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) ) )
275214, 274mpd 15 . . . . . . . . . 10  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( 2nd `  ( 1st `  T
) )  =/=  (
( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) ) )
276179fveq2d 6195 . . . . . . . . . . 11  |-  ( z  =  T  ->  ( 2nd `  ( 1st `  z
) )  =  ( 2nd `  ( 1st `  T ) ) )
277276neeq1d 2853 . . . . . . . . . 10  |-  ( z  =  T  ->  (
( 2nd `  ( 1st `  z ) )  =/=  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) )  <->  ( 2nd `  ( 1st `  T ) )  =/=  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) ) )
278275, 277syl5ibrcom 237 . . . . . . . . 9  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( z  =  T  ->  ( 2nd `  ( 1st `  z
) )  =/=  (
( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) ) ) )
279278necon2d 2817 . . . . . . . 8  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( ( 2nd `  ( 1st `  z
) )  =  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )  ->  z  =/=  T
) )
280209, 279syl5 34 . . . . . . 7  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( (
( ( 1st `  ( 1st `  z ) )  =  ( 1st `  ( 1st `  T ) )  /\  ( 2nd `  ( 1st `  z ) )  =  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) )  /\  ( 2nd `  z )  =  ( 2nd `  T
) )  ->  z  =/=  T ) )
281280adantr 481 . . . . . 6  |-  ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  ->  (
( ( ( 1st `  ( 1st `  z
) )  =  ( 1st `  ( 1st `  T ) )  /\  ( 2nd `  ( 1st `  z ) )  =  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) ) )  /\  ( 2nd `  z )  =  ( 2nd `  T ) )  ->  z  =/=  T ) )
282208, 281impbid 202 . . . . 5  |-  ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  ->  (
z  =/=  T  <->  ( (
( 1st `  ( 1st `  z ) )  =  ( 1st `  ( 1st `  T ) )  /\  ( 2nd `  ( 1st `  z ) )  =  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) )  /\  ( 2nd `  z )  =  ( 2nd `  T
) ) ) )
283 eqop 7208 . . . . . . . 8  |-  ( z  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  (
z  =  <. <. ( 1st `  ( 1st `  T
) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
>. ,  ( 2nd `  T ) >.  <->  ( ( 1st `  z )  = 
<. ( 1st `  ( 1st `  T ) ) ,  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) >.  /\  ( 2nd `  z )  =  ( 2nd `  T
) ) ) )
284 eqop 7208 . . . . . . . . . 10  |-  ( ( 1st `  z )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( ( 1st `  z
)  =  <. ( 1st `  ( 1st `  T
) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
>. 
<->  ( ( 1st `  ( 1st `  z ) )  =  ( 1st `  ( 1st `  T ) )  /\  ( 2nd `  ( 1st `  z ) )  =  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) ) ) )
28577, 284syl 17 . . . . . . . . 9  |-  ( z  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  (
( 1st `  z
)  =  <. ( 1st `  ( 1st `  T
) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
>. 
<->  ( ( 1st `  ( 1st `  z ) )  =  ( 1st `  ( 1st `  T ) )  /\  ( 2nd `  ( 1st `  z ) )  =  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) ) ) )
286285anbi1d 741 . . . . . . . 8  |-  ( z  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  (
( ( 1st `  z
)  =  <. ( 1st `  ( 1st `  T
) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
>.  /\  ( 2nd `  z
)  =  ( 2nd `  T ) )  <->  ( (
( 1st `  ( 1st `  z ) )  =  ( 1st `  ( 1st `  T ) )  /\  ( 2nd `  ( 1st `  z ) )  =  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) )  /\  ( 2nd `  z )  =  ( 2nd `  T
) ) ) )
287283, 286bitrd 268 . . . . . . 7  |-  ( z  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  (
z  =  <. <. ( 1st `  ( 1st `  T
) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
>. ,  ( 2nd `  T ) >.  <->  ( (
( 1st `  ( 1st `  z ) )  =  ( 1st `  ( 1st `  T ) )  /\  ( 2nd `  ( 1st `  z ) )  =  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) )  /\  ( 2nd `  z )  =  ( 2nd `  T
) ) ) )
28876, 287syl 17 . . . . . 6  |-  ( z  e.  S  ->  (
z  =  <. <. ( 1st `  ( 1st `  T
) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
>. ,  ( 2nd `  T ) >.  <->  ( (
( 1st `  ( 1st `  z ) )  =  ( 1st `  ( 1st `  T ) )  /\  ( 2nd `  ( 1st `  z ) )  =  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) )  /\  ( 2nd `  z )  =  ( 2nd `  T
) ) ) )
289288adantl 482 . . . . 5  |-  ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  ->  (
z  =  <. <. ( 1st `  ( 1st `  T
) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
>. ,  ( 2nd `  T ) >.  <->  ( (
( 1st `  ( 1st `  z ) )  =  ( 1st `  ( 1st `  T ) )  /\  ( 2nd `  ( 1st `  z ) )  =  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) )  /\  ( 2nd `  z )  =  ( 2nd `  T
) ) ) )
290282, 289bitr4d 271 . . . 4  |-  ( ( ( ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  /\  z  e.  S )  ->  (
z  =/=  T  <->  z  =  <. <. ( 1st `  ( 1st `  T ) ) ,  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) >. ,  ( 2nd `  T ) >. )
)
291290ralrimiva 2966 . . 3  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  A. z  e.  S  ( z  =/=  T  <->  z  =  <. <.
( 1st `  ( 1st `  T ) ) ,  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) >. ,  ( 2nd `  T ) >. )
)
292 reu6i 3397 . . 3  |-  ( (
<. <. ( 1st `  ( 1st `  T ) ) ,  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) >. ,  ( 2nd `  T ) >.  e.  S  /\  A. z  e.  S  ( z  =/=  T  <->  z  =  <. <. ( 1st `  ( 1st `  T ) ) ,  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) >. ,  ( 2nd `  T ) >. )
)  ->  E! z  e.  S  z  =/=  T )
2939, 291, 292syl2anc 693 . 2  |-  ( (
ph  /\  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  E! z  e.  S  z  =/=  T )
294 xp2nd 7199 . . . . . . 7  |-  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 2nd `  T )  e.  ( 0 ... N
) )
29533, 294syl 17 . . . . . 6  |-  ( ph  ->  ( 2nd `  T
)  e.  ( 0 ... N ) )
296295biantrurd 529 . . . . 5  |-  ( ph  ->  ( -.  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) )  <-> 
( ( 2nd `  T
)  e.  ( 0 ... N )  /\  -.  ( 2nd `  T
)  e.  ( 1 ... ( N  - 
1 ) ) ) ) )
2971nnnn0d 11351 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  NN0 )
298 nn0uz 11722 . . . . . . . . . . . 12  |-  NN0  =  ( ZZ>= `  0 )
299297, 298syl6eleq 2711 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
300 fzpred 12389 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( 0 ... N )  =  ( { 0 }  u.  ( ( 0  +  1 ) ... N ) ) )
301299, 300syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( 0 ... N
)  =  ( { 0 }  u.  (
( 0  +  1 ) ... N ) ) )
302125oveq1i 6660 . . . . . . . . . . 11  |-  ( ( 0  +  1 ) ... N )  =  ( 1 ... N
)
303302uneq2i 3764 . . . . . . . . . 10  |-  ( { 0 }  u.  (
( 0  +  1 ) ... N ) )  =  ( { 0 }  u.  (
1 ... N ) )
304301, 303syl6eq 2672 . . . . . . . . 9  |-  ( ph  ->  ( 0 ... N
)  =  ( { 0 }  u.  (
1 ... N ) ) )
305304difeq1d 3727 . . . . . . . 8  |-  ( ph  ->  ( ( 0 ... N )  \  (
1 ... ( N  - 
1 ) ) )  =  ( ( { 0 }  u.  (
1 ... N ) ) 
\  ( 1 ... ( N  -  1 ) ) ) )
306 difundir 3880 . . . . . . . . . 10  |-  ( ( { 0 }  u.  ( 1 ... N
) )  \  (
1 ... ( N  - 
1 ) ) )  =  ( ( { 0 }  \  (
1 ... ( N  - 
1 ) ) )  u.  ( ( 1 ... N )  \ 
( 1 ... ( N  -  1 ) ) ) )
307 0lt1 10550 . . . . . . . . . . . . . 14  |-  0  <  1
308 0re 10040 . . . . . . . . . . . . . . 15  |-  0  e.  RR
309 1re 10039 . . . . . . . . . . . . . . 15  |-  1  e.  RR
310308, 309ltnlei 10158 . . . . . . . . . . . . . 14  |-  ( 0  <  1  <->  -.  1  <_  0 )
311307, 310mpbi 220 . . . . . . . . . . . . 13  |-  -.  1  <_  0
312 elfzle1 12344 . . . . . . . . . . . . 13  |-  ( 0  e.  ( 1 ... ( N  -  1 ) )  ->  1  <_  0 )
313311, 312mto 188 . . . . . . . . . . . 12  |-  -.  0  e.  ( 1 ... ( N  -  1 ) )
314 incom 3805 . . . . . . . . . . . . . 14  |-  ( ( 1 ... ( N  -  1 ) )  i^i  { 0 } )  =  ( { 0 }  i^i  (
1 ... ( N  - 
1 ) ) )
315314eqeq1i 2627 . . . . . . . . . . . . 13  |-  ( ( ( 1 ... ( N  -  1 ) )  i^i  { 0 } )  =  (/)  <->  ( { 0 }  i^i  ( 1 ... ( N  -  1 ) ) )  =  (/) )
316 disjsn 4246 . . . . . . . . . . . . 13  |-  ( ( ( 1 ... ( N  -  1 ) )  i^i  { 0 } )  =  (/)  <->  -.  0  e.  ( 1 ... ( N  - 
1 ) ) )
317 disj3 4021 . . . . . . . . . . . . 13  |-  ( ( { 0 }  i^i  ( 1 ... ( N  -  1 ) ) )  =  (/)  <->  {
0 }  =  ( { 0 }  \ 
( 1 ... ( N  -  1 ) ) ) )
318315, 316, 3173bitr3i 290 . . . . . . . . . . . 12  |-  ( -.  0  e.  ( 1 ... ( N  - 
1 ) )  <->  { 0 }  =  ( {
0 }  \  (
1 ... ( N  - 
1 ) ) ) )
319313, 318mpbi 220 . . . . . . . . . . 11  |-  { 0 }  =  ( { 0 }  \  (
1 ... ( N  - 
1 ) ) )
320319uneq1i 3763 . . . . . . . . . 10  |-  ( { 0 }  u.  (
( 1 ... N
)  \  ( 1 ... ( N  - 
1 ) ) ) )  =  ( ( { 0 }  \ 
( 1 ... ( N  -  1 ) ) )  u.  (
( 1 ... N
)  \  ( 1 ... ( N  - 
1 ) ) ) )
321306, 320eqtr4i 2647 . . . . . . . . 9  |-  ( ( { 0 }  u.  ( 1 ... N
) )  \  (
1 ... ( N  - 
1 ) ) )  =  ( { 0 }  u.  ( ( 1 ... N ) 
\  ( 1 ... ( N  -  1 ) ) ) )
322 difundir 3880 . . . . . . . . . . . 12  |-  ( ( ( 1 ... ( N  -  1 ) )  u.  { N } )  \  (
1 ... ( N  - 
1 ) ) )  =  ( ( ( 1 ... ( N  -  1 ) ) 
\  ( 1 ... ( N  -  1 ) ) )  u.  ( { N }  \  ( 1 ... ( N  -  1 ) ) ) )
323 difid 3948 . . . . . . . . . . . . 13  |-  ( ( 1 ... ( N  -  1 ) ) 
\  ( 1 ... ( N  -  1 ) ) )  =  (/)
324323uneq1i 3763 . . . . . . . . . . . 12  |-  ( ( ( 1 ... ( N  -  1 ) )  \  ( 1 ... ( N  - 
1 ) ) )  u.  ( { N }  \  ( 1 ... ( N  -  1 ) ) ) )  =  ( (/)  u.  ( { N }  \  (
1 ... ( N  - 
1 ) ) ) )
325 uncom 3757 . . . . . . . . . . . . 13  |-  ( (/)  u.  ( { N }  \  ( 1 ... ( N  -  1 ) ) ) )  =  ( ( { N }  \  (
1 ... ( N  - 
1 ) ) )  u.  (/) )
326 un0 3967 . . . . . . . . . . . . 13  |-  ( ( { N }  \ 
( 1 ... ( N  -  1 ) ) )  u.  (/) )  =  ( { N }  \  ( 1 ... ( N  -  1 ) ) )
327325, 326eqtri 2644 . . . . . . . . . . . 12  |-  ( (/)  u.  ( { N }  \  ( 1 ... ( N  -  1 ) ) ) )  =  ( { N }  \  ( 1 ... ( N  -  1 ) ) )
328322, 324, 3273eqtri 2648 . . . . . . . . . . 11  |-  ( ( ( 1 ... ( N  -  1 ) )  u.  { N } )  \  (
1 ... ( N  - 
1 ) ) )  =  ( { N }  \  ( 1 ... ( N  -  1 ) ) )
329 nnuz 11723 . . . . . . . . . . . . . . . 16  |-  NN  =  ( ZZ>= `  1 )
3301, 329syl6eleq 2711 . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  ( ZZ>= ` 
1 ) )
331255, 330eqeltrd 2701 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= ` 
1 ) )
332 fzsplit2 12366 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  N  e.  ( ZZ>= `  ( N  -  1 ) ) )  ->  ( 1 ... N )  =  ( ( 1 ... ( N  -  1 ) )  u.  (
( ( N  - 
1 )  +  1 ) ... N ) ) )
333331, 261, 332syl2anc 693 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1 ... N
)  =  ( ( 1 ... ( N  -  1 ) )  u.  ( ( ( N  -  1 )  +  1 ) ... N ) ) )
334255oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( N  -  1 )  +  1 ) ... N
)  =  ( N ... N ) )
3351nnzd 11481 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  ZZ )
336 fzsn 12383 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ZZ  ->  ( N ... N )  =  { N } )
337335, 336syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( N ... N
)  =  { N } )
338334, 337eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( N  -  1 )  +  1 ) ... N
)  =  { N } )
339338uneq2d 3767 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 1 ... ( N  -  1 ) )  u.  (
( ( N  - 
1 )  +  1 ) ... N ) )  =  ( ( 1 ... ( N  -  1 ) )  u.  { N }
) )
340333, 339eqtrd 2656 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1 ... N
)  =  ( ( 1 ... ( N  -  1 ) )  u.  { N }
) )
341340difeq1d 3727 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1 ... N )  \  (
1 ... ( N  - 
1 ) ) )  =  ( ( ( 1 ... ( N  -  1 ) )  u.  { N }
)  \  ( 1 ... ( N  - 
1 ) ) ) )
3421nnred 11035 . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  RR )
343342ltm1d 10956 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( N  -  1 )  <  N )
344167nn0red 11352 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( N  -  1 )  e.  RR )
345344, 342ltnled 10184 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( N  - 
1 )  <  N  <->  -.  N  <_  ( N  -  1 ) ) )
346343, 345mpbid 222 . . . . . . . . . . . . 13  |-  ( ph  ->  -.  N  <_  ( N  -  1 ) )
347 elfzle2 12345 . . . . . . . . . . . . 13  |-  ( N  e.  ( 1 ... ( N  -  1 ) )  ->  N  <_  ( N  -  1 ) )
348346, 347nsyl 135 . . . . . . . . . . . 12  |-  ( ph  ->  -.  N  e.  ( 1 ... ( N  -  1 ) ) )
349 incom 3805 . . . . . . . . . . . . . 14  |-  ( ( 1 ... ( N  -  1 ) )  i^i  { N }
)  =  ( { N }  i^i  (
1 ... ( N  - 
1 ) ) )
350349eqeq1i 2627 . . . . . . . . . . . . 13  |-  ( ( ( 1 ... ( N  -  1 ) )  i^i  { N } )  =  (/)  <->  ( { N }  i^i  (
1 ... ( N  - 
1 ) ) )  =  (/) )
351 disjsn 4246 . . . . . . . . . . . . 13  |-  ( ( ( 1 ... ( N  -  1 ) )  i^i  { N } )  =  (/)  <->  -.  N  e.  ( 1 ... ( N  - 
1 ) ) )
352 disj3 4021 . . . . . . . . . . . . 13  |-  ( ( { N }  i^i  ( 1 ... ( N  -  1 ) ) )  =  (/)  <->  { N }  =  ( { N }  \  (
1 ... ( N  - 
1 ) ) ) )
353350, 351, 3523bitr3i 290 . . . . . . . . . . . 12  |-  ( -.  N  e.  ( 1 ... ( N  - 
1 ) )  <->  { N }  =  ( { N }  \  (
1 ... ( N  - 
1 ) ) ) )
354348, 353sylib 208 . . . . . . . . . . 11  |-  ( ph  ->  { N }  =  ( { N }  \ 
( 1 ... ( N  -  1 ) ) ) )
355328, 341, 3543eqtr4a 2682 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1 ... N )  \  (
1 ... ( N  - 
1 ) ) )  =  { N }
)
356355uneq2d 3767 . . . . . . . . 9  |-  ( ph  ->  ( { 0 }  u.  ( ( 1 ... N )  \ 
( 1 ... ( N  -  1 ) ) ) )  =  ( { 0 }  u.  { N }
) )
357321, 356syl5eq 2668 . . . . . . . 8  |-  ( ph  ->  ( ( { 0 }  u.  ( 1 ... N ) ) 
\  ( 1 ... ( N  -  1 ) ) )  =  ( { 0 }  u.  { N }
) )
358305, 357eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( 0 ... N )  \  (
1 ... ( N  - 
1 ) ) )  =  ( { 0 }  u.  { N } ) )
359358eleq2d 2687 . . . . . 6  |-  ( ph  ->  ( ( 2nd `  T
)  e.  ( ( 0 ... N ) 
\  ( 1 ... ( N  -  1 ) ) )  <->  ( 2nd `  T )  e.  ( { 0 }  u.  { N } ) ) )
360 eldif 3584 . . . . . 6  |-  ( ( 2nd `  T )  e.  ( ( 0 ... N )  \ 
( 1 ... ( N  -  1 ) ) )  <->  ( ( 2nd `  T )  e.  ( 0 ... N
)  /\  -.  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) ) )
361 elun 3753 . . . . . . 7  |-  ( ( 2nd `  T )  e.  ( { 0 }  u.  { N } )  <->  ( ( 2nd `  T )  e. 
{ 0 }  \/  ( 2nd `  T )  e.  { N }
) )
362219elsn 4192 . . . . . . . 8  |-  ( ( 2nd `  T )  e.  { 0 }  <-> 
( 2nd `  T
)  =  0 )
363219elsn 4192 . . . . . . . 8  |-  ( ( 2nd `  T )  e.  { N }  <->  ( 2nd `  T )  =  N )
364362, 363orbi12i 543 . . . . . . 7  |-  ( ( ( 2nd `  T
)  e.  { 0 }  \/  ( 2nd `  T )  e.  { N } )  <->  ( ( 2nd `  T )  =  0  \/  ( 2nd `  T )  =  N ) )
365361, 364bitri 264 . . . . . 6  |-  ( ( 2nd `  T )  e.  ( { 0 }  u.  { N } )  <->  ( ( 2nd `  T )  =  0  \/  ( 2nd `  T )  =  N ) )
366359, 360, 3653bitr3g 302 . . . . 5  |-  ( ph  ->  ( ( ( 2nd `  T )  e.  ( 0 ... N )  /\  -.  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  <->  ( ( 2nd `  T )  =  0  \/  ( 2nd `  T
)  =  N ) ) )
367296, 366bitrd 268 . . . 4  |-  ( ph  ->  ( -.  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) )  <-> 
( ( 2nd `  T
)  =  0  \/  ( 2nd `  T
)  =  N ) ) )
368367biimpa 501 . . 3  |-  ( (
ph  /\  -.  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( 2nd `  T
)  =  0  \/  ( 2nd `  T
)  =  N ) )
3691adantr 481 . . . . 5  |-  ( (
ph  /\  ( 2nd `  T )  =  0 )  ->  N  e.  NN )
3704adantr 481 . . . . 5  |-  ( (
ph  /\  ( 2nd `  T )  =  0 )  ->  F :
( 0 ... ( N  -  1 ) ) --> ( ( 0 ... K )  ^m  ( 1 ... N
) ) )
3716adantr 481 . . . . 5  |-  ( (
ph  /\  ( 2nd `  T )  =  0 )  ->  T  e.  S )
372 poimirlem22.4 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  E. p  e.  ran  F ( p `
 n )  =/= 
K )
373372adantlr 751 . . . . 5  |-  ( ( ( ph  /\  ( 2nd `  T )  =  0 )  /\  n  e.  ( 1 ... N
) )  ->  E. p  e.  ran  F ( p `
 n )  =/= 
K )
374 simpr 477 . . . . 5  |-  ( (
ph  /\  ( 2nd `  T )  =  0 )  ->  ( 2nd `  T )  =  0 )
375369, 3, 370, 371, 373, 374poimirlem18 33427 . . . 4  |-  ( (
ph  /\  ( 2nd `  T )  =  0 )  ->  E! z  e.  S  z  =/=  T )
3761adantr 481 . . . . 5  |-  ( (
ph  /\  ( 2nd `  T )  =  N )  ->  N  e.  NN )
3774adantr 481 . . . . 5  |-  ( (
ph  /\  ( 2nd `  T )  =  N )  ->  F :
( 0 ... ( N  -  1 ) ) --> ( ( 0 ... K )  ^m  ( 1 ... N
) ) )
3786adantr 481 . . . . 5  |-  ( (
ph  /\  ( 2nd `  T )  =  N )  ->  T  e.  S )
379 poimirlem22.3 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  E. p  e.  ran  F ( p `
 n )  =/=  0 )
380379adantlr 751 . . . . 5  |-  ( ( ( ph  /\  ( 2nd `  T )  =  N )  /\  n  e.  ( 1 ... N
) )  ->  E. p  e.  ran  F ( p `
 n )  =/=  0 )
381 simpr 477 . . . . 5  |-  ( (
ph  /\  ( 2nd `  T )  =  N )  ->  ( 2nd `  T )  =  N )
382376, 3, 377, 378, 380, 381poimirlem21 33430 . . . 4  |-  ( (
ph  /\  ( 2nd `  T )  =  N )  ->  E! z  e.  S  z  =/=  T )
383375, 382jaodan 826 . . 3  |-  ( (
ph  /\  ( ( 2nd `  T )  =  0  \/  ( 2nd `  T )  =  N ) )  ->  E! z  e.  S  z  =/=  T )
384368, 383syldan 487 . 2  |-  ( (
ph  /\  -.  ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) ) )  ->  E! z  e.  S  z  =/=  T )
385293, 384pm2.61dan 832 1  |-  ( ph  ->  E! z  e.  S  z  =/=  T )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   E!wreu 2914   E*wrmo 2915   {crab 2916   _Vcvv 3200   [_csb 3533    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177   {cpr 4179   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    X. cxp 5112   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    oFcof 6895   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-fac 13061  df-bc 13090  df-hash 13118
This theorem is referenced by:  poimirlem27  33436
  Copyright terms: Public domain W3C validator