MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitalilem5 Structured version   Visualization version   Unicode version

Theorem vitalilem5 23381
Description: Lemma for vitali 23382. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
vitali.1  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( 0 [,] 1 )  /\  y  e.  ( 0 [,] 1 ) )  /\  ( x  -  y )  e.  QQ ) }
vitali.2  |-  S  =  ( ( 0 [,] 1 ) /.  .~  )
vitali.3  |-  ( ph  ->  F  Fn  S )
vitali.4  |-  ( ph  ->  A. z  e.  S  ( z  =/=  (/)  ->  ( F `  z )  e.  z ) )
vitali.5  |-  ( ph  ->  G : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) ) )
vitali.6  |-  T  =  ( n  e.  NN  |->  { s  e.  RR  |  ( s  -  ( G `  n ) )  e.  ran  F } )
vitali.7  |-  ( ph  ->  -.  ran  F  e.  ( ~P RR  \  dom  vol ) )
Assertion
Ref Expression
vitalilem5  |-  -.  ph
Distinct variable groups:    n, s, x, y, z, G    ph, n, x, z    z, S    x, T    n, F, s, x, y, z    .~ , n, s, x, y, z
Allowed substitution hints:    ph( y, s)    S( x, y, n, s)    T( y, z, n, s)

Proof of Theorem vitalilem5
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 0lt1 10550 . . . 4  |-  0  <  1
2 0re 10040 . . . . . 6  |-  0  e.  RR
3 1re 10039 . . . . . 6  |-  1  e.  RR
4 0le1 10551 . . . . . 6  |-  0  <_  1
5 ovolicc 23291 . . . . . 6  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  0  <_  1 )  ->  ( vol* `  ( 0 [,] 1 ) )  =  ( 1  -  0 ) )
62, 3, 4, 5mp3an 1424 . . . . 5  |-  ( vol* `  ( 0 [,] 1 ) )  =  ( 1  -  0 )
7 1m0e1 11131 . . . . 5  |-  ( 1  -  0 )  =  1
86, 7eqtri 2644 . . . 4  |-  ( vol* `  ( 0 [,] 1 ) )  =  1
91, 8breqtrri 4680 . . 3  |-  0  <  ( vol* `  ( 0 [,] 1
) )
108, 3eqeltri 2697 . . . 4  |-  ( vol* `  ( 0 [,] 1 ) )  e.  RR
112, 10ltnlei 10158 . . 3  |-  ( 0  <  ( vol* `  ( 0 [,] 1
) )  <->  -.  ( vol* `  ( 0 [,] 1 ) )  <_  0 )
129, 11mpbi 220 . 2  |-  -.  ( vol* `  ( 0 [,] 1 ) )  <_  0
13 vitali.1 . . . . . 6  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( 0 [,] 1 )  /\  y  e.  ( 0 [,] 1 ) )  /\  ( x  -  y )  e.  QQ ) }
14 vitali.2 . . . . . 6  |-  S  =  ( ( 0 [,] 1 ) /.  .~  )
15 vitali.3 . . . . . 6  |-  ( ph  ->  F  Fn  S )
16 vitali.4 . . . . . 6  |-  ( ph  ->  A. z  e.  S  ( z  =/=  (/)  ->  ( F `  z )  e.  z ) )
17 vitali.5 . . . . . 6  |-  ( ph  ->  G : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) ) )
18 vitali.6 . . . . . 6  |-  T  =  ( n  e.  NN  |->  { s  e.  RR  |  ( s  -  ( G `  n ) )  e.  ran  F } )
19 vitali.7 . . . . . 6  |-  ( ph  ->  -.  ran  F  e.  ( ~P RR  \  dom  vol ) )
2013, 14, 15, 16, 17, 18, 19vitalilem2 23378 . . . . 5  |-  ( ph  ->  ( ran  F  C_  ( 0 [,] 1
)  /\  ( 0 [,] 1 )  C_  U_ m  e.  NN  ( T `  m )  /\  U_ m  e.  NN  ( T `  m ) 
C_  ( -u 1 [,] 2 ) ) )
2120simp2d 1074 . . . 4  |-  ( ph  ->  ( 0 [,] 1
)  C_  U_ m  e.  NN  ( T `  m ) )
2213vitalilem1 23376 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  .~  Er  ( 0 [,] 1
)
23 erdm 7752 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  (  .~  Er  ( 0 [,] 1
)  ->  dom  .~  =  ( 0 [,] 1
) )
2422, 23ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23  |-  dom  .~  =  ( 0 [,] 1 )
25 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  z  e.  S )  ->  z  e.  S )
2625, 14syl6eleq 2711 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  z  e.  S )  ->  z  e.  ( ( 0 [,] 1 ) /.  .~  ) )
27 elqsn0 7816 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( dom  .~  =  ( 0 [,] 1 )  /\  z  e.  ( ( 0 [,] 1
) /.  .~  )
)  ->  z  =/=  (/) )
2824, 26, 27sylancr 695 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  z  e.  S )  ->  z  =/=  (/) )
2922a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  .~  Er  ( 0 [,] 1 ) )
3029qsss 7808 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( ( 0 [,] 1 ) /.  .~  )  C_  ~P ( 0 [,] 1 ) )
3114, 30syl5eqss 3649 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  S  C_  ~P (
0 [,] 1 ) )
3231sselda 3603 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  z  e.  S )  ->  z  e.  ~P ( 0 [,] 1 ) )
3332elpwid 4170 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  z  e.  S )  ->  z  C_  ( 0 [,] 1
) )
3433sseld 3602 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  z  e.  S )  ->  (
( F `  z
)  e.  z  -> 
( F `  z
)  e.  ( 0 [,] 1 ) ) )
3528, 34embantd 59 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  z  e.  S )  ->  (
( z  =/=  (/)  ->  ( F `  z )  e.  z )  ->  ( F `  z )  e.  ( 0 [,] 1
) ) )
3635ralimdva 2962 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( A. z  e.  S  ( z  =/=  (/)  ->  ( F `  z )  e.  z )  ->  A. z  e.  S  ( F `  z )  e.  ( 0 [,] 1 ) ) )
3716, 36mpd 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A. z  e.  S  ( F `  z )  e.  ( 0 [,] 1 ) )
38 ffnfv 6388 . . . . . . . . . . . . . . . . . . 19  |-  ( F : S --> ( 0 [,] 1 )  <->  ( F  Fn  S  /\  A. z  e.  S  ( F `  z )  e.  ( 0 [,] 1 ) ) )
3915, 37, 38sylanbrc 698 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F : S --> ( 0 [,] 1 ) )
40 frn 6053 . . . . . . . . . . . . . . . . . 18  |-  ( F : S --> ( 0 [,] 1 )  ->  ran  F  C_  ( 0 [,] 1 ) )
4139, 40syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ran  F  C_  (
0 [,] 1 ) )
42 unitssre 12319 . . . . . . . . . . . . . . . . 17  |-  ( 0 [,] 1 )  C_  RR
4341, 42syl6ss 3615 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ran  F  C_  RR )
44 reex 10027 . . . . . . . . . . . . . . . . 17  |-  RR  e.  _V
4544elpw2 4828 . . . . . . . . . . . . . . . 16  |-  ( ran 
F  e.  ~P RR  <->  ran 
F  C_  RR )
4643, 45sylibr 224 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ran  F  e.  ~P RR )
4746anim1i 592 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  -.  ran  F  e.  dom  vol )  -> 
( ran  F  e.  ~P RR  /\  -.  ran  F  e.  dom  vol )
)
48 eldif 3584 . . . . . . . . . . . . . 14  |-  ( ran 
F  e.  ( ~P RR  \  dom  vol ) 
<->  ( ran  F  e. 
~P RR  /\  -.  ran  F  e.  dom  vol ) )
4947, 48sylibr 224 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  ran  F  e.  dom  vol )  ->  ran  F  e.  ( ~P RR  \  dom  vol ) )
5049ex 450 . . . . . . . . . . . 12  |-  ( ph  ->  ( -.  ran  F  e.  dom  vol  ->  ran  F  e.  ( ~P RR  \  dom  vol ) ) )
5119, 50mt3d 140 . . . . . . . . . . 11  |-  ( ph  ->  ran  F  e.  dom  vol )
5251adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ran  F  e.  dom  vol )
53 f1of 6137 . . . . . . . . . . . . 13  |-  ( G : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) )  ->  G : NN
--> ( QQ  i^i  ( -u 1 [,] 1 ) ) )
5417, 53syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  G : NN --> ( QQ 
i^i  ( -u 1 [,] 1 ) ) )
55 inss1 3833 . . . . . . . . . . . . 13  |-  ( QQ 
i^i  ( -u 1 [,] 1 ) )  C_  QQ
56 qssre 11798 . . . . . . . . . . . . 13  |-  QQ  C_  RR
5755, 56sstri 3612 . . . . . . . . . . . 12  |-  ( QQ 
i^i  ( -u 1 [,] 1 ) )  C_  RR
58 fss 6056 . . . . . . . . . . . 12  |-  ( ( G : NN --> ( QQ 
i^i  ( -u 1 [,] 1 ) )  /\  ( QQ  i^i  ( -u 1 [,] 1 ) )  C_  RR )  ->  G : NN --> RR )
5954, 57, 58sylancl 694 . . . . . . . . . . 11  |-  ( ph  ->  G : NN --> RR )
6059ffvelrnda 6359 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( G `
 n )  e.  RR )
61 shftmbl 23306 . . . . . . . . . 10  |-  ( ( ran  F  e.  dom  vol 
/\  ( G `  n )  e.  RR )  ->  { s  e.  RR  |  ( s  -  ( G `  n ) )  e. 
ran  F }  e.  dom  vol )
6252, 60, 61syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  { s  e.  RR  |  ( s  -  ( G `
 n ) )  e.  ran  F }  e.  dom  vol )
6362, 18fmptd 6385 . . . . . . . 8  |-  ( ph  ->  T : NN --> dom  vol )
6463ffvelrnda 6359 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  ( T `
 m )  e. 
dom  vol )
6564ralrimiva 2966 . . . . . 6  |-  ( ph  ->  A. m  e.  NN  ( T `  m )  e.  dom  vol )
66 iunmbl 23321 . . . . . 6  |-  ( A. m  e.  NN  ( T `  m )  e.  dom  vol  ->  U_ m  e.  NN  ( T `  m )  e.  dom  vol )
6765, 66syl 17 . . . . 5  |-  ( ph  ->  U_ m  e.  NN  ( T `  m )  e.  dom  vol )
68 mblss 23299 . . . . 5  |-  ( U_ m  e.  NN  ( T `  m )  e.  dom  vol  ->  U_ m  e.  NN  ( T `  m )  C_  RR )
6967, 68syl 17 . . . 4  |-  ( ph  ->  U_ m  e.  NN  ( T `  m ) 
C_  RR )
70 ovolss 23253 . . . 4  |-  ( ( ( 0 [,] 1
)  C_  U_ m  e.  NN  ( T `  m )  /\  U_ m  e.  NN  ( T `  m )  C_  RR )  ->  ( vol* `  ( 0 [,] 1 ) )  <_  ( vol* `  U_ m  e.  NN  ( T `  m ) ) )
7121, 69, 70syl2anc 693 . . 3  |-  ( ph  ->  ( vol* `  ( 0 [,] 1
) )  <_  ( vol* `  U_ m  e.  NN  ( T `  m ) ) )
72 eqid 2622 . . . . . 6  |-  seq 1
(  +  ,  ( m  e.  NN  |->  ( vol* `  ( T `  m )
) ) )  =  seq 1 (  +  ,  ( m  e.  NN  |->  ( vol* `  ( T `  m
) ) ) )
73 eqid 2622 . . . . . 6  |-  ( m  e.  NN  |->  ( vol* `  ( T `  m ) ) )  =  ( m  e.  NN  |->  ( vol* `  ( T `  m
) ) )
74 mblss 23299 . . . . . . 7  |-  ( ( T `  m )  e.  dom  vol  ->  ( T `  m ) 
C_  RR )
7564, 74syl 17 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( T `
 m )  C_  RR )
7613, 14, 15, 16, 17, 18, 19vitalilem4 23380 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  ( vol* `  ( T `  m ) )  =  0 )
7776, 2syl6eqel 2709 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( vol* `  ( T `  m ) )  e.  RR )
7876mpteq2dva 4744 . . . . . . . . . 10  |-  ( ph  ->  ( m  e.  NN  |->  ( vol* `  ( T `  m )
) )  =  ( m  e.  NN  |->  0 ) )
79 fconstmpt 5163 . . . . . . . . . . 11  |-  ( NN 
X.  { 0 } )  =  ( m  e.  NN  |->  0 )
80 nnuz 11723 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
8180xpeq1i 5135 . . . . . . . . . . 11  |-  ( NN 
X.  { 0 } )  =  ( (
ZZ>= `  1 )  X. 
{ 0 } )
8279, 81eqtr3i 2646 . . . . . . . . . 10  |-  ( m  e.  NN  |->  0 )  =  ( ( ZZ>= ` 
1 )  X.  {
0 } )
8378, 82syl6eq 2672 . . . . . . . . 9  |-  ( ph  ->  ( m  e.  NN  |->  ( vol* `  ( T `  m )
) )  =  ( ( ZZ>= `  1 )  X.  { 0 } ) )
8483seqeq3d 12809 . . . . . . . 8  |-  ( ph  ->  seq 1 (  +  ,  ( m  e.  NN  |->  ( vol* `  ( T `  m
) ) ) )  =  seq 1 (  +  ,  ( (
ZZ>= `  1 )  X. 
{ 0 } ) ) )
85 1z 11407 . . . . . . . . 9  |-  1  e.  ZZ
86 serclim0 14308 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  seq 1 (  +  , 
( ( ZZ>= `  1
)  X.  { 0 } ) )  ~~>  0 )
8785, 86ax-mp 5 . . . . . . . 8  |-  seq 1
(  +  ,  ( ( ZZ>= `  1 )  X.  { 0 } ) )  ~~>  0
8884, 87syl6eqbr 4692 . . . . . . 7  |-  ( ph  ->  seq 1 (  +  ,  ( m  e.  NN  |->  ( vol* `  ( T `  m
) ) ) )  ~~>  0 )
89 seqex 12803 . . . . . . . 8  |-  seq 1
(  +  ,  ( m  e.  NN  |->  ( vol* `  ( T `  m )
) ) )  e. 
_V
90 c0ex 10034 . . . . . . . 8  |-  0  e.  _V
9189, 90breldm 5329 . . . . . . 7  |-  (  seq 1 (  +  , 
( m  e.  NN  |->  ( vol* `  ( T `  m )
) ) )  ~~>  0  ->  seq 1 (  +  , 
( m  e.  NN  |->  ( vol* `  ( T `  m )
) ) )  e. 
dom 
~~>  )
9288, 91syl 17 . . . . . 6  |-  ( ph  ->  seq 1 (  +  ,  ( m  e.  NN  |->  ( vol* `  ( T `  m
) ) ) )  e.  dom  ~~>  )
9372, 73, 75, 77, 92ovoliun2 23274 . . . . 5  |-  ( ph  ->  ( vol* `  U_ m  e.  NN  ( T `  m )
)  <_  sum_ m  e.  NN  ( vol* `  ( T `  m
) ) )
9476sumeq2dv 14433 . . . . . 6  |-  ( ph  -> 
sum_ m  e.  NN  ( vol* `  ( T `  m )
)  =  sum_ m  e.  NN  0 )
9580eqimssi 3659 . . . . . . . 8  |-  NN  C_  ( ZZ>= `  1 )
9695orci 405 . . . . . . 7  |-  ( NN  C_  ( ZZ>= `  1 )  \/  NN  e.  Fin )
97 sumz 14453 . . . . . . 7  |-  ( ( NN  C_  ( ZZ>= ` 
1 )  \/  NN  e.  Fin )  ->  sum_ m  e.  NN  0  =  0 )
9896, 97ax-mp 5 . . . . . 6  |-  sum_ m  e.  NN  0  =  0
9994, 98syl6eq 2672 . . . . 5  |-  ( ph  -> 
sum_ m  e.  NN  ( vol* `  ( T `  m )
)  =  0 )
10093, 99breqtrd 4679 . . . 4  |-  ( ph  ->  ( vol* `  U_ m  e.  NN  ( T `  m )
)  <_  0 )
101 ovolge0 23249 . . . . 5  |-  ( U_ m  e.  NN  ( T `  m )  C_  RR  ->  0  <_  ( vol* `  U_ m  e.  NN  ( T `  m ) ) )
10269, 101syl 17 . . . 4  |-  ( ph  ->  0  <_  ( vol* `  U_ m  e.  NN  ( T `  m ) ) )
103 ovolcl 23246 . . . . . 6  |-  ( U_ m  e.  NN  ( T `  m )  C_  RR  ->  ( vol* `  U_ m  e.  NN  ( T `  m ) )  e. 
RR* )
10469, 103syl 17 . . . . 5  |-  ( ph  ->  ( vol* `  U_ m  e.  NN  ( T `  m )
)  e.  RR* )
105 0xr 10086 . . . . 5  |-  0  e.  RR*
106 xrletri3 11985 . . . . 5  |-  ( ( ( vol* `  U_ m  e.  NN  ( T `  m )
)  e.  RR*  /\  0  e.  RR* )  ->  (
( vol* `  U_ m  e.  NN  ( T `  m )
)  =  0  <->  (
( vol* `  U_ m  e.  NN  ( T `  m )
)  <_  0  /\  0  <_  ( vol* `  U_ m  e.  NN  ( T `  m ) ) ) ) )
107104, 105, 106sylancl 694 . . . 4  |-  ( ph  ->  ( ( vol* `  U_ m  e.  NN  ( T `  m ) )  =  0  <->  (
( vol* `  U_ m  e.  NN  ( T `  m )
)  <_  0  /\  0  <_  ( vol* `  U_ m  e.  NN  ( T `  m ) ) ) ) )
108100, 102, 107mpbir2and 957 . . 3  |-  ( ph  ->  ( vol* `  U_ m  e.  NN  ( T `  m )
)  =  0 )
10971, 108breqtrd 4679 . 2  |-  ( ph  ->  ( vol* `  ( 0 [,] 1
) )  <_  0
)
11012, 109mto 188 1  |-  -.  ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   U_ciun 4520   class class class wbr 4653   {copab 4712    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    Er wer 7739   /.cqs 7741   Fincfn 7955   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267   NNcn 11020   2c2 11070   ZZcz 11377   ZZ>=cuz 11687   QQcq 11788   [,]cicc 12178    seqcseq 12801    ~~> cli 14215   sum_csu 14416   vol*covol 23231   volcvol 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234
This theorem is referenced by:  vitali  23382
  Copyright terms: Public domain W3C validator