MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hofcl Structured version   Visualization version   Unicode version

Theorem hofcl 16899
Description: Closure of the Hom functor. Note that the codomain is the category  SetCat `  U for any universe  U which contains each Hom-set. This corresponds to the assertion that  C be locally small (with respect to  U). (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofcl.m  |-  M  =  (HomF
`  C )
hofcl.o  |-  O  =  (oppCat `  C )
hofcl.d  |-  D  =  ( SetCat `  U )
hofcl.c  |-  ( ph  ->  C  e.  Cat )
hofcl.u  |-  ( ph  ->  U  e.  V )
hofcl.h  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
Assertion
Ref Expression
hofcl  |-  ( ph  ->  M  e.  ( ( O  X.c  C )  Func  D
) )

Proof of Theorem hofcl
Dummy variables  f 
g  x  y  z  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofcl.m . . . 4  |-  M  =  (HomF
`  C )
2 hofcl.c . . . 4  |-  ( ph  ->  C  e.  Cat )
3 eqid 2622 . . . 4  |-  ( Base `  C )  =  (
Base `  C )
4 eqid 2622 . . . 4  |-  ( Hom  `  C )  =  ( Hom  `  C )
5 eqid 2622 . . . 4  |-  (comp `  C )  =  (comp `  C )
61, 2, 3, 4, 5hofval 16892 . . 3  |-  ( ph  ->  M  =  <. ( Hom f  `  C ) ,  ( x  e.  ( (
Base `  C )  X.  ( Base `  C
) ) ,  y  e.  ( ( Base `  C )  X.  ( Base `  C ) ) 
|->  ( f  e.  ( ( 1st `  y
) ( Hom  `  C
) ( 1st `  x
) ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C ) ( 2nd `  y ) )  |->  ( h  e.  ( ( Hom  `  C ) `  x )  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) ) ) ) >.
)
7 fvex 6201 . . . . . 6  |-  ( Hom f  `  C )  e.  _V
8 fvex 6201 . . . . . . . 8  |-  ( Base `  C )  e.  _V
98, 8xpex 6962 . . . . . . 7  |-  ( (
Base `  C )  X.  ( Base `  C
) )  e.  _V
109, 9mpt2ex 7247 . . . . . 6  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  C ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  |->  ( f  e.  ( ( 1st `  y ) ( Hom  `  C
) ( 1st `  x
) ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C ) ( 2nd `  y ) )  |->  ( h  e.  ( ( Hom  `  C ) `  x )  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) ) ) )  e. 
_V
117, 10op2ndd 7179 . . . . 5  |-  ( M  =  <. ( Hom f  `  C ) ,  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ,  y  e.  ( (
Base `  C )  X.  ( Base `  C
) )  |->  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C
) ( 2nd `  y
) )  |->  ( h  e.  ( ( Hom  `  C ) `  x
)  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) ) ) ) >.  ->  ( 2nd `  M
)  =  ( x  e.  ( ( Base `  C )  X.  ( Base `  C ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  |->  ( f  e.  ( ( 1st `  y ) ( Hom  `  C
) ( 1st `  x
) ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C ) ( 2nd `  y ) )  |->  ( h  e.  ( ( Hom  `  C ) `  x )  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) ) ) ) )
126, 11syl 17 . . . 4  |-  ( ph  ->  ( 2nd `  M
)  =  ( x  e.  ( ( Base `  C )  X.  ( Base `  C ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  |->  ( f  e.  ( ( 1st `  y ) ( Hom  `  C
) ( 1st `  x
) ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C ) ( 2nd `  y ) )  |->  ( h  e.  ( ( Hom  `  C ) `  x )  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) ) ) ) )
1312opeq2d 4409 . . 3  |-  ( ph  -> 
<. ( Hom f  `  C ) ,  ( 2nd `  M
) >.  =  <. ( Hom f  `  C ) ,  ( x  e.  ( (
Base `  C )  X.  ( Base `  C
) ) ,  y  e.  ( ( Base `  C )  X.  ( Base `  C ) ) 
|->  ( f  e.  ( ( 1st `  y
) ( Hom  `  C
) ( 1st `  x
) ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C ) ( 2nd `  y ) )  |->  ( h  e.  ( ( Hom  `  C ) `  x )  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) ) ) ) >.
)
146, 13eqtr4d 2659 . 2  |-  ( ph  ->  M  =  <. ( Hom f  `  C ) ,  ( 2nd `  M )
>. )
15 eqid 2622 . . . . 5  |-  ( O  X.c  C )  =  ( O  X.c  C )
16 hofcl.o . . . . . 6  |-  O  =  (oppCat `  C )
1716, 3oppcbas 16378 . . . . 5  |-  ( Base `  C )  =  (
Base `  O )
1815, 17, 3xpcbas 16818 . . . 4  |-  ( (
Base `  C )  X.  ( Base `  C
) )  =  (
Base `  ( O  X.c  C ) )
19 eqid 2622 . . . 4  |-  ( Base `  D )  =  (
Base `  D )
20 eqid 2622 . . . 4  |-  ( Hom  `  ( O  X.c  C ) )  =  ( Hom  `  ( O  X.c  C ) )
21 eqid 2622 . . . 4  |-  ( Hom  `  D )  =  ( Hom  `  D )
22 eqid 2622 . . . 4  |-  ( Id
`  ( O  X.c  C
) )  =  ( Id `  ( O  X.c  C ) )
23 eqid 2622 . . . 4  |-  ( Id
`  D )  =  ( Id `  D
)
24 eqid 2622 . . . 4  |-  (comp `  ( O  X.c  C )
)  =  (comp `  ( O  X.c  C )
)
25 eqid 2622 . . . 4  |-  (comp `  D )  =  (comp `  D )
2616oppccat 16382 . . . . . 6  |-  ( C  e.  Cat  ->  O  e.  Cat )
272, 26syl 17 . . . . 5  |-  ( ph  ->  O  e.  Cat )
2815, 27, 2xpccat 16830 . . . 4  |-  ( ph  ->  ( O  X.c  C )  e.  Cat )
29 hofcl.u . . . . 5  |-  ( ph  ->  U  e.  V )
30 hofcl.d . . . . . 6  |-  D  =  ( SetCat `  U )
3130setccat 16735 . . . . 5  |-  ( U  e.  V  ->  D  e.  Cat )
3229, 31syl 17 . . . 4  |-  ( ph  ->  D  e.  Cat )
33 eqid 2622 . . . . . . . 8  |-  ( Hom f  `  C )  =  ( Hom f  `  C )
3433, 3homffn 16353 . . . . . . 7  |-  ( Hom f  `  C )  Fn  (
( Base `  C )  X.  ( Base `  C
) )
3534a1i 11 . . . . . 6  |-  ( ph  ->  ( Hom f  `  C )  Fn  ( ( Base `  C
)  X.  ( Base `  C ) ) )
36 hofcl.h . . . . . 6  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
37 df-f 5892 . . . . . 6  |-  ( ( Hom f  `  C ) : ( ( Base `  C
)  X.  ( Base `  C ) ) --> U  <-> 
( ( Hom f  `  C )  Fn  ( ( Base `  C )  X.  ( Base `  C ) )  /\  ran  ( Hom f  `  C )  C_  U
) )
3835, 36, 37sylanbrc 698 . . . . 5  |-  ( ph  ->  ( Hom f  `  C ) : ( ( Base `  C
)  X.  ( Base `  C ) ) --> U )
3930, 29setcbas 16728 . . . . . 6  |-  ( ph  ->  U  =  ( Base `  D ) )
4039feq3d 6032 . . . . 5  |-  ( ph  ->  ( ( Hom f  `  C ) : ( ( Base `  C )  X.  ( Base `  C ) ) --> U  <->  ( Hom f  `  C ) : ( ( Base `  C )  X.  ( Base `  C ) ) --> ( Base `  D
) ) )
4138, 40mpbid 222 . . . 4  |-  ( ph  ->  ( Hom f  `  C ) : ( ( Base `  C
)  X.  ( Base `  C ) ) --> (
Base `  D )
)
42 eqid 2622 . . . . . 6  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  C ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  |->  ( f  e.  ( ( 1st `  y ) ( Hom  `  C
) ( 1st `  x
) ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C ) ( 2nd `  y ) )  |->  ( h  e.  ( ( Hom  `  C ) `  x )  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) ) ) )  =  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ,  y  e.  ( (
Base `  C )  X.  ( Base `  C
) )  |->  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C
) ( 2nd `  y
) )  |->  ( h  e.  ( ( Hom  `  C ) `  x
)  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) ) ) )
43 ovex 6678 . . . . . . 7  |-  ( ( 1st `  y ) ( Hom  `  C
) ( 1st `  x
) )  e.  _V
44 ovex 6678 . . . . . . 7  |-  ( ( 2nd `  x ) ( Hom  `  C
) ( 2nd `  y
) )  e.  _V
4543, 44mpt2ex 7247 . . . . . 6  |-  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C
) ( 2nd `  y
) )  |->  ( h  e.  ( ( Hom  `  C ) `  x
)  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) ) )  e.  _V
4642, 45fnmpt2i 7239 . . . . 5  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  C ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  |->  ( f  e.  ( ( 1st `  y ) ( Hom  `  C
) ( 1st `  x
) ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C ) ( 2nd `  y ) )  |->  ( h  e.  ( ( Hom  `  C ) `  x )  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) ) ) )  Fn  ( ( ( Base `  C )  X.  ( Base `  C ) )  X.  ( ( Base `  C )  X.  ( Base `  C ) ) )
4712fneq1d 5981 . . . . 5  |-  ( ph  ->  ( ( 2nd `  M
)  Fn  ( ( ( Base `  C
)  X.  ( Base `  C ) )  X.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  <-> 
( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ,  y  e.  ( (
Base `  C )  X.  ( Base `  C
) )  |->  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C
) ( 2nd `  y
) )  |->  ( h  e.  ( ( Hom  `  C ) `  x
)  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) ) ) )  Fn  ( ( ( Base `  C )  X.  ( Base `  C ) )  X.  ( ( Base `  C )  X.  ( Base `  C ) ) ) ) )
4846, 47mpbiri 248 . . . 4  |-  ( ph  ->  ( 2nd `  M
)  Fn  ( ( ( Base `  C
)  X.  ( Base `  C ) )  X.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )
492ad3antrrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  (
( Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  /\  h  e.  ( ( Hom  `  C
) `  x )
)  ->  C  e.  Cat )
50 simplrr 801 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )
51 xp1st 7198 . . . . . . . . . . . . . 14  |-  ( y  e.  ( ( Base `  C )  X.  ( Base `  C ) )  ->  ( 1st `  y
)  e.  ( Base `  C ) )
5250, 51syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( 1st `  y
)  e.  ( Base `  C ) )
5352adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  (
( Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  /\  h  e.  ( ( Hom  `  C
) `  x )
)  ->  ( 1st `  y )  e.  (
Base `  C )
)
54 simplrl 800 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )
55 xp1st 7198 . . . . . . . . . . . . . 14  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  C ) )  ->  ( 1st `  x
)  e.  ( Base `  C ) )
5654, 55syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( 1st `  x
)  e.  ( Base `  C ) )
5756adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  (
( Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  /\  h  e.  ( ( Hom  `  C
) `  x )
)  ->  ( 1st `  x )  e.  (
Base `  C )
)
58 xp2nd 7199 . . . . . . . . . . . . . 14  |-  ( y  e.  ( ( Base `  C )  X.  ( Base `  C ) )  ->  ( 2nd `  y
)  e.  ( Base `  C ) )
5950, 58syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( 2nd `  y
)  e.  ( Base `  C ) )
6059adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  (
( Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  /\  h  e.  ( ( Hom  `  C
) `  x )
)  ->  ( 2nd `  y )  e.  (
Base `  C )
)
61 simplrl 800 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  (
( Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  /\  h  e.  ( ( Hom  `  C
) `  x )
)  ->  f  e.  ( ( 1st `  y
) ( Hom  `  C
) ( 1st `  x
) ) )
62 1st2nd2 7205 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  C ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
6354, 62syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
6463adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  (
( Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  /\  h  e.  ( ( Hom  `  C
) `  x )
)  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
6564oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  (
( Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  /\  h  e.  ( ( Hom  `  C
) `  x )
)  ->  ( x
(comp `  C )
( 2nd `  y
) )  =  (
<. ( 1st `  x
) ,  ( 2nd `  x ) >. (comp `  C ) ( 2nd `  y ) ) )
6665oveqd 6667 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  (
( Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  /\  h  e.  ( ( Hom  `  C
) `  x )
)  ->  ( g
( x (comp `  C ) ( 2nd `  y ) ) h )  =  ( g ( <. ( 1st `  x
) ,  ( 2nd `  x ) >. (comp `  C ) ( 2nd `  y ) ) h ) )
67 xp2nd 7199 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  C ) )  ->  ( 2nd `  x
)  e.  ( Base `  C ) )
6854, 67syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( 2nd `  x
)  e.  ( Base `  C ) )
6968adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  (
( Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  /\  h  e.  ( ( Hom  `  C
) `  x )
)  ->  ( 2nd `  x )  e.  (
Base `  C )
)
7063fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( ( Hom  `  C ) `  x
)  =  ( ( Hom  `  C ) `  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
)
71 df-ov 6653 . . . . . . . . . . . . . . . . 17  |-  ( ( 1st `  x ) ( Hom  `  C
) ( 2nd `  x
) )  =  ( ( Hom  `  C
) `  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )
7270, 71syl6eqr 2674 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( ( Hom  `  C ) `  x
)  =  ( ( 1st `  x ) ( Hom  `  C
) ( 2nd `  x
) ) )
7372eleq2d 2687 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( h  e.  ( ( Hom  `  C
) `  x )  <->  h  e.  ( ( 1st `  x ) ( Hom  `  C ) ( 2nd `  x ) ) ) )
7473biimpa 501 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  (
( Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  /\  h  e.  ( ( Hom  `  C
) `  x )
)  ->  h  e.  ( ( 1st `  x
) ( Hom  `  C
) ( 2nd `  x
) ) )
75 simplrr 801 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  (
( Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  /\  h  e.  ( ( Hom  `  C
) `  x )
)  ->  g  e.  ( ( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) ) )
763, 4, 5, 49, 57, 69, 60, 74, 75catcocl 16346 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  (
( Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  /\  h  e.  ( ( Hom  `  C
) `  x )
)  ->  ( g
( <. ( 1st `  x
) ,  ( 2nd `  x ) >. (comp `  C ) ( 2nd `  y ) ) h )  e.  ( ( 1st `  x ) ( Hom  `  C
) ( 2nd `  y
) ) )
7766, 76eqeltrd 2701 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  (
( Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  /\  h  e.  ( ( Hom  `  C
) `  x )
)  ->  ( g
( x (comp `  C ) ( 2nd `  y ) ) h )  e.  ( ( 1st `  x ) ( Hom  `  C
) ( 2nd `  y
) ) )
783, 4, 5, 49, 53, 57, 60, 61, 77catcocl 16346 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  (
( Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  /\  h  e.  ( ( Hom  `  C
) `  x )
)  ->  ( (
g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f )  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 2nd `  y ) ) )
79 1st2nd2 7205 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( ( Base `  C )  X.  ( Base `  C ) )  ->  y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
8050, 79syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
8180fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( ( Hom  `  C ) `  y
)  =  ( ( Hom  `  C ) `  <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
)
82 df-ov 6653 . . . . . . . . . . . . 13  |-  ( ( 1st `  y ) ( Hom  `  C
) ( 2nd `  y
) )  =  ( ( Hom  `  C
) `  <. ( 1st `  y ) ,  ( 2nd `  y )
>. )
8381, 82syl6eqr 2674 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( ( Hom  `  C ) `  y
)  =  ( ( 1st `  y ) ( Hom  `  C
) ( 2nd `  y
) ) )
8483adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  (
( Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  /\  h  e.  ( ( Hom  `  C
) `  x )
)  ->  ( ( Hom  `  C ) `  y )  =  ( ( 1st `  y
) ( Hom  `  C
) ( 2nd `  y
) ) )
8578, 84eleqtrrd 2704 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  (
( Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  /\  h  e.  ( ( Hom  `  C
) `  x )
)  ->  ( (
g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f )  e.  ( ( Hom  `  C ) `  y
) )
86 eqid 2622 . . . . . . . . . 10  |-  ( h  e.  ( ( Hom  `  C ) `  x
)  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) )  =  ( h  e.  ( ( Hom  `  C ) `  x
)  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) )
8785, 86fmptd 6385 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( h  e.  ( ( Hom  `  C
) `  x )  |->  ( ( g ( x (comp `  C
) ( 2nd `  y
) ) h ) ( <. ( 1st `  y
) ,  ( 1st `  x ) >. (comp `  C ) ( 2nd `  y ) ) f ) ) : ( ( Hom  `  C
) `  x ) --> ( ( Hom  `  C
) `  y )
)
8829ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  U  e.  V
)
8933, 3, 4, 56, 68homfval 16352 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( ( 1st `  x ) ( Hom f  `  C ) ( 2nd `  x ) )  =  ( ( 1st `  x
) ( Hom  `  C
) ( 2nd `  x
) ) )
9063fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( ( Hom f  `  C ) `  x
)  =  ( ( Hom f  `  C ) `  <. ( 1st `  x ) ,  ( 2nd `  x
) >. ) )
91 df-ov 6653 . . . . . . . . . . . . 13  |-  ( ( 1st `  x ) ( Hom f  `  C ) ( 2nd `  x ) )  =  ( ( Hom f  `  C ) `  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
9290, 91syl6eqr 2674 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( ( Hom f  `  C ) `  x
)  =  ( ( 1st `  x ) ( Hom f  `  C ) ( 2nd `  x ) ) )
9389, 92, 723eqtr4d 2666 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( ( Hom f  `  C ) `  x
)  =  ( ( Hom  `  C ) `  x ) )
9438ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( Hom f  `  C ) : ( ( Base `  C )  X.  ( Base `  C ) ) --> U )
9594, 54ffvelrnd 6360 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( ( Hom f  `  C ) `  x
)  e.  U )
9693, 95eqeltrrd 2702 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( ( Hom  `  C ) `  x
)  e.  U )
9733, 3, 4, 52, 59homfval 16352 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( ( 1st `  y ) ( Hom f  `  C ) ( 2nd `  y ) )  =  ( ( 1st `  y
) ( Hom  `  C
) ( 2nd `  y
) ) )
9880fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( ( Hom f  `  C ) `  y
)  =  ( ( Hom f  `  C ) `  <. ( 1st `  y ) ,  ( 2nd `  y
) >. ) )
99 df-ov 6653 . . . . . . . . . . . . 13  |-  ( ( 1st `  y ) ( Hom f  `  C ) ( 2nd `  y ) )  =  ( ( Hom f  `  C ) `  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
10098, 99syl6eqr 2674 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( ( Hom f  `  C ) `  y
)  =  ( ( 1st `  y ) ( Hom f  `  C ) ( 2nd `  y ) ) )
10197, 100, 833eqtr4d 2666 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( ( Hom f  `  C ) `  y
)  =  ( ( Hom  `  C ) `  y ) )
10294, 50ffvelrnd 6360 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( ( Hom f  `  C ) `  y
)  e.  U )
103101, 102eqeltrrd 2702 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( ( Hom  `  C ) `  y
)  e.  U )
10430, 88, 21, 96, 103elsetchom 16731 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( ( h  e.  ( ( Hom  `  C ) `  x
)  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) )  e.  ( ( ( Hom  `  C
) `  x )
( Hom  `  D ) ( ( Hom  `  C
) `  y )
)  <->  ( h  e.  ( ( Hom  `  C
) `  x )  |->  ( ( g ( x (comp `  C
) ( 2nd `  y
) ) h ) ( <. ( 1st `  y
) ,  ( 1st `  x ) >. (comp `  C ) ( 2nd `  y ) ) f ) ) : ( ( Hom  `  C
) `  x ) --> ( ( Hom  `  C
) `  y )
) )
10587, 104mpbird 247 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( h  e.  ( ( Hom  `  C
) `  x )  |->  ( ( g ( x (comp `  C
) ( 2nd `  y
) ) h ) ( <. ( 1st `  y
) ,  ( 1st `  x ) >. (comp `  C ) ( 2nd `  y ) ) f ) )  e.  ( ( ( Hom  `  C
) `  x )
( Hom  `  D ) ( ( Hom  `  C
) `  y )
) )
10693, 101oveq12d 6668 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( ( ( Hom f  `  C ) `  x
) ( Hom  `  D
) ( ( Hom f  `  C ) `  y
) )  =  ( ( ( Hom  `  C
) `  x )
( Hom  `  D ) ( ( Hom  `  C
) `  y )
) )
107105, 106eleqtrrd 2704 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ) )  /\  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  /\  g  e.  ( ( 2nd `  x ) ( Hom  `  C )
( 2nd `  y
) ) ) )  ->  ( h  e.  ( ( Hom  `  C
) `  x )  |->  ( ( g ( x (comp `  C
) ( 2nd `  y
) ) h ) ( <. ( 1st `  y
) ,  ( 1st `  x ) >. (comp `  C ) ( 2nd `  y ) ) f ) )  e.  ( ( ( Hom f  `  C ) `
 x ) ( Hom  `  D )
( ( Hom f  `  C ) `
 y ) ) )
108107ralrimivva 2971 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) ) ) )  ->  A. f  e.  ( ( 1st `  y
) ( Hom  `  C
) ( 1st `  x
) ) A. g  e.  ( ( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) ) ( h  e.  ( ( Hom  `  C ) `  x
)  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) )  e.  ( ( ( Hom f  `  C ) `  x ) ( Hom  `  D ) ( ( Hom f  `  C ) `  y
) ) )
109 eqid 2622 . . . . . . 7  |-  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C
) ( 2nd `  y
) )  |->  ( h  e.  ( ( Hom  `  C ) `  x
)  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) ) )  =  ( f  e.  ( ( 1st `  y ) ( Hom  `  C
) ( 1st `  x
) ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C ) ( 2nd `  y ) )  |->  ( h  e.  ( ( Hom  `  C ) `  x )  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) ) )
110109fmpt2 7237 . . . . . 6  |-  ( A. f  e.  ( ( 1st `  y ) ( Hom  `  C )
( 1st `  x
) ) A. g  e.  ( ( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) ) ( h  e.  ( ( Hom  `  C ) `  x
)  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) )  e.  ( ( ( Hom f  `  C ) `  x ) ( Hom  `  D ) ( ( Hom f  `  C ) `  y
) )  <->  ( f  e.  ( ( 1st `  y
) ( Hom  `  C
) ( 1st `  x
) ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C ) ( 2nd `  y ) )  |->  ( h  e.  ( ( Hom  `  C ) `  x )  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) ) ) : ( ( ( 1st `  y
) ( Hom  `  C
) ( 1st `  x
) )  X.  (
( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) ) ) --> ( ( ( Hom f  `  C ) `
 x ) ( Hom  `  D )
( ( Hom f  `  C ) `
 y ) ) )
111108, 110sylib 208 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) ) ) )  ->  ( f  e.  ( ( 1st `  y
) ( Hom  `  C
) ( 1st `  x
) ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C ) ( 2nd `  y ) )  |->  ( h  e.  ( ( Hom  `  C ) `  x )  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) ) ) : ( ( ( 1st `  y
) ( Hom  `  C
) ( 1st `  x
) )  X.  (
( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) ) ) --> ( ( ( Hom f  `  C ) `
 x ) ( Hom  `  D )
( ( Hom f  `  C ) `
 y ) ) )
11212oveqd 6667 . . . . . . 7  |-  ( ph  ->  ( x ( 2nd `  M ) y )  =  ( x ( x  e.  ( (
Base `  C )  X.  ( Base `  C
) ) ,  y  e.  ( ( Base `  C )  X.  ( Base `  C ) ) 
|->  ( f  e.  ( ( 1st `  y
) ( Hom  `  C
) ( 1st `  x
) ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C ) ( 2nd `  y ) )  |->  ( h  e.  ( ( Hom  `  C ) `  x )  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) ) ) ) y ) )
11342ovmpt4g 6783 . . . . . . . 8  |-  ( ( x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  ( f  e.  ( ( 1st `  y
) ( Hom  `  C
) ( 1st `  x
) ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C ) ( 2nd `  y ) )  |->  ( h  e.  ( ( Hom  `  C ) `  x )  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) ) )  e.  _V )  ->  ( x ( x  e.  ( (
Base `  C )  X.  ( Base `  C
) ) ,  y  e.  ( ( Base `  C )  X.  ( Base `  C ) ) 
|->  ( f  e.  ( ( 1st `  y
) ( Hom  `  C
) ( 1st `  x
) ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C ) ( 2nd `  y ) )  |->  ( h  e.  ( ( Hom  `  C ) `  x )  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) ) ) ) y )  =  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C
) ( 2nd `  y
) )  |->  ( h  e.  ( ( Hom  `  C ) `  x
)  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) ) ) )
11445, 113mp3an3 1413 . . . . . . 7  |-  ( ( x  e.  ( (
Base `  C )  X.  ( Base `  C
) )  /\  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  ( x ( x  e.  ( (
Base `  C )  X.  ( Base `  C
) ) ,  y  e.  ( ( Base `  C )  X.  ( Base `  C ) ) 
|->  ( f  e.  ( ( 1st `  y
) ( Hom  `  C
) ( 1st `  x
) ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C ) ( 2nd `  y ) )  |->  ( h  e.  ( ( Hom  `  C ) `  x )  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) ) ) ) y )  =  ( f  e.  ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C
) ( 2nd `  y
) )  |->  ( h  e.  ( ( Hom  `  C ) `  x
)  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) ) ) )
115112, 114sylan9eq 2676 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) ) ) )  ->  ( x ( 2nd `  M ) y )  =  ( f  e.  ( ( 1st `  y ) ( Hom  `  C
) ( 1st `  x
) ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C ) ( 2nd `  y ) )  |->  ( h  e.  ( ( Hom  `  C ) `  x )  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) ) ) )
116 eqid 2622 . . . . . . . 8  |-  ( Hom  `  O )  =  ( Hom  `  O )
117 simprl 794 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) ) ) )  ->  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )
118 simprr 796 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) ) ) )  ->  y  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )
11915, 18, 116, 4, 20, 117, 118xpchom 16820 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) ) ) )  ->  ( x ( Hom  `  ( O  X.c  C ) ) y )  =  ( ( ( 1st `  x
) ( Hom  `  O
) ( 1st `  y
) )  X.  (
( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) ) ) )
1204, 16oppchom 16375 . . . . . . . 8  |-  ( ( 1st `  x ) ( Hom  `  O
) ( 1st `  y
) )  =  ( ( 1st `  y
) ( Hom  `  C
) ( 1st `  x
) )
121120xpeq1i 5135 . . . . . . 7  |-  ( ( ( 1st `  x
) ( Hom  `  O
) ( 1st `  y
) )  X.  (
( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) ) )  =  ( ( ( 1st `  y ) ( Hom  `  C ) ( 1st `  x ) )  X.  ( ( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) ) )
122119, 121syl6eq 2672 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) ) ) )  ->  ( x ( Hom  `  ( O  X.c  C ) ) y )  =  ( ( ( 1st `  y
) ( Hom  `  C
) ( 1st `  x
) )  X.  (
( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) ) ) )
123115, 122feq12d 6033 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) ) ) )  ->  ( ( x ( 2nd `  M
) y ) : ( x ( Hom  `  ( O  X.c  C ) ) y ) --> ( ( ( Hom f  `  C ) `
 x ) ( Hom  `  D )
( ( Hom f  `  C ) `
 y ) )  <-> 
( f  e.  ( ( 1st `  y
) ( Hom  `  C
) ( 1st `  x
) ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C ) ( 2nd `  y ) )  |->  ( h  e.  ( ( Hom  `  C ) `  x )  |->  ( ( g ( x (comp `  C ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  y
) ) f ) ) ) : ( ( ( 1st `  y
) ( Hom  `  C
) ( 1st `  x
) )  X.  (
( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) ) ) --> ( ( ( Hom f  `  C ) `
 x ) ( Hom  `  D )
( ( Hom f  `  C ) `
 y ) ) ) )
124111, 123mpbird 247 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) ) ) )  ->  ( x ( 2nd `  M ) y ) : ( x ( Hom  `  ( O  X.c  C ) ) y ) --> ( ( ( Hom f  `  C ) `  x
) ( Hom  `  D
) ( ( Hom f  `  C ) `  y
) ) )
125 eqid 2622 . . . . . . . . . 10  |-  ( Id
`  C )  =  ( Id `  C
)
1262ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  f  e.  ( ( 1st `  x
) ( Hom  `  C
) ( 2nd `  x
) ) )  ->  C  e.  Cat )
12755adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  ( 1st `  x
)  e.  ( Base `  C ) )
128127adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  f  e.  ( ( 1st `  x
) ( Hom  `  C
) ( 2nd `  x
) ) )  -> 
( 1st `  x
)  e.  ( Base `  C ) )
12967adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  ( 2nd `  x
)  e.  ( Base `  C ) )
130129adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  f  e.  ( ( 1st `  x
) ( Hom  `  C
) ( 2nd `  x
) ) )  -> 
( 2nd `  x
)  e.  ( Base `  C ) )
131 simpr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  f  e.  ( ( 1st `  x
) ( Hom  `  C
) ( 2nd `  x
) ) )  -> 
f  e.  ( ( 1st `  x ) ( Hom  `  C
) ( 2nd `  x
) ) )
1323, 4, 125, 126, 128, 5, 130, 131catlid 16344 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  f  e.  ( ( 1st `  x
) ( Hom  `  C
) ( 2nd `  x
) ) )  -> 
( ( ( Id
`  C ) `  ( 2nd `  x ) ) ( <. ( 1st `  x ) ,  ( 2nd `  x
) >. (comp `  C
) ( 2nd `  x
) ) f )  =  f )
133132oveq1d 6665 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  f  e.  ( ( 1st `  x
) ( Hom  `  C
) ( 2nd `  x
) ) )  -> 
( ( ( ( Id `  C ) `
 ( 2nd `  x
) ) ( <.
( 1st `  x
) ,  ( 2nd `  x ) >. (comp `  C ) ( 2nd `  x ) ) f ) ( <. ( 1st `  x ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  x
) ) ( ( Id `  C ) `
 ( 1st `  x
) ) )  =  ( f ( <.
( 1st `  x
) ,  ( 1st `  x ) >. (comp `  C ) ( 2nd `  x ) ) ( ( Id `  C
) `  ( 1st `  x ) ) ) )
1343, 4, 125, 126, 128, 5, 130, 131catrid 16345 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  f  e.  ( ( 1st `  x
) ( Hom  `  C
) ( 2nd `  x
) ) )  -> 
( f ( <.
( 1st `  x
) ,  ( 1st `  x ) >. (comp `  C ) ( 2nd `  x ) ) ( ( Id `  C
) `  ( 1st `  x ) ) )  =  f )
135133, 134eqtrd 2656 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  f  e.  ( ( 1st `  x
) ( Hom  `  C
) ( 2nd `  x
) ) )  -> 
( ( ( ( Id `  C ) `
 ( 2nd `  x
) ) ( <.
( 1st `  x
) ,  ( 2nd `  x ) >. (comp `  C ) ( 2nd `  x ) ) f ) ( <. ( 1st `  x ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  x
) ) ( ( Id `  C ) `
 ( 1st `  x
) ) )  =  f )
136135mpteq2dva 4744 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  ( f  e.  ( ( 1st `  x
) ( Hom  `  C
) ( 2nd `  x
) )  |->  ( ( ( ( Id `  C ) `  ( 2nd `  x ) ) ( <. ( 1st `  x
) ,  ( 2nd `  x ) >. (comp `  C ) ( 2nd `  x ) ) f ) ( <. ( 1st `  x ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  x
) ) ( ( Id `  C ) `
 ( 1st `  x
) ) ) )  =  ( f  e.  ( ( 1st `  x
) ( Hom  `  C
) ( 2nd `  x
) )  |->  f ) )
137 df-ov 6653 . . . . . . 7  |-  ( ( ( Id `  C
) `  ( 1st `  x ) ) (
<. ( 1st `  x
) ,  ( 2nd `  x ) >. ( 2nd `  M ) <.
( 1st `  x
) ,  ( 2nd `  x ) >. )
( ( Id `  C ) `  ( 2nd `  x ) ) )  =  ( (
<. ( 1st `  x
) ,  ( 2nd `  x ) >. ( 2nd `  M ) <.
( 1st `  x
) ,  ( 2nd `  x ) >. ) `  <. ( ( Id
`  C ) `  ( 1st `  x ) ) ,  ( ( Id `  C ) `
 ( 2nd `  x
) ) >. )
1382adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  C  e.  Cat )
1393, 4, 125, 138, 127catidcl 16343 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  ( ( Id
`  C ) `  ( 1st `  x ) )  e.  ( ( 1st `  x ) ( Hom  `  C
) ( 1st `  x
) ) )
1403, 4, 125, 138, 129catidcl 16343 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  ( ( Id
`  C ) `  ( 2nd `  x ) )  e.  ( ( 2nd `  x ) ( Hom  `  C
) ( 2nd `  x
) ) )
1411, 138, 3, 4, 127, 129, 127, 129, 5, 139, 140hof2val 16896 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  ( ( ( Id `  C ) `
 ( 1st `  x
) ) ( <.
( 1st `  x
) ,  ( 2nd `  x ) >. ( 2nd `  M ) <.
( 1st `  x
) ,  ( 2nd `  x ) >. )
( ( Id `  C ) `  ( 2nd `  x ) ) )  =  ( f  e.  ( ( 1st `  x ) ( Hom  `  C ) ( 2nd `  x ) )  |->  ( ( ( ( Id
`  C ) `  ( 2nd `  x ) ) ( <. ( 1st `  x ) ,  ( 2nd `  x
) >. (comp `  C
) ( 2nd `  x
) ) f ) ( <. ( 1st `  x
) ,  ( 1st `  x ) >. (comp `  C ) ( 2nd `  x ) ) ( ( Id `  C
) `  ( 1st `  x ) ) ) ) )
142137, 141syl5eqr 2670 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  ( ( <.
( 1st `  x
) ,  ( 2nd `  x ) >. ( 2nd `  M ) <.
( 1st `  x
) ,  ( 2nd `  x ) >. ) `  <. ( ( Id
`  C ) `  ( 1st `  x ) ) ,  ( ( Id `  C ) `
 ( 2nd `  x
) ) >. )  =  ( f  e.  ( ( 1st `  x
) ( Hom  `  C
) ( 2nd `  x
) )  |->  ( ( ( ( Id `  C ) `  ( 2nd `  x ) ) ( <. ( 1st `  x
) ,  ( 2nd `  x ) >. (comp `  C ) ( 2nd `  x ) ) f ) ( <. ( 1st `  x ) ,  ( 1st `  x
) >. (comp `  C
) ( 2nd `  x
) ) ( ( Id `  C ) `
 ( 1st `  x
) ) ) ) )
14362adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
144143fveq2d 6195 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  ( ( Hom f  `  C ) `  x
)  =  ( ( Hom f  `  C ) `  <. ( 1st `  x ) ,  ( 2nd `  x
) >. ) )
145144, 91syl6eqr 2674 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  ( ( Hom f  `  C ) `  x
)  =  ( ( 1st `  x ) ( Hom f  `  C ) ( 2nd `  x ) ) )
14633, 3, 4, 127, 129homfval 16352 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  ( ( 1st `  x ) ( Hom f  `  C ) ( 2nd `  x ) )  =  ( ( 1st `  x
) ( Hom  `  C
) ( 2nd `  x
) ) )
147145, 146eqtrd 2656 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  ( ( Hom f  `  C ) `  x
)  =  ( ( 1st `  x ) ( Hom  `  C
) ( 2nd `  x
) ) )
148147reseq2d 5396 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  (  _I  |`  (
( Hom f  `  C ) `  x ) )  =  (  _I  |`  (
( 1st `  x
) ( Hom  `  C
) ( 2nd `  x
) ) ) )
149 mptresid 5456 . . . . . . 7  |-  ( f  e.  ( ( 1st `  x ) ( Hom  `  C ) ( 2nd `  x ) )  |->  f )  =  (  _I  |`  ( ( 1st `  x
) ( Hom  `  C
) ( 2nd `  x
) ) )
150148, 149syl6eqr 2674 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  (  _I  |`  (
( Hom f  `  C ) `  x ) )  =  ( f  e.  ( ( 1st `  x
) ( Hom  `  C
) ( 2nd `  x
) )  |->  f ) )
151136, 142, 1503eqtr4d 2666 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  ( ( <.
( 1st `  x
) ,  ( 2nd `  x ) >. ( 2nd `  M ) <.
( 1st `  x
) ,  ( 2nd `  x ) >. ) `  <. ( ( Id
`  C ) `  ( 1st `  x ) ) ,  ( ( Id `  C ) `
 ( 2nd `  x
) ) >. )  =  (  _I  |`  (
( Hom f  `  C ) `  x ) ) )
152143, 143oveq12d 6668 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  ( x ( 2nd `  M ) x )  =  (
<. ( 1st `  x
) ,  ( 2nd `  x ) >. ( 2nd `  M ) <.
( 1st `  x
) ,  ( 2nd `  x ) >. )
)
153143fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  ( ( Id
`  ( O  X.c  C
) ) `  x
)  =  ( ( Id `  ( O  X.c  C ) ) `  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
)
15427adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  O  e.  Cat )
155 eqid 2622 . . . . . . . 8  |-  ( Id
`  O )  =  ( Id `  O
)
15615, 154, 138, 17, 3, 155, 125, 22, 127, 129xpcid 16829 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  ( ( Id
`  ( O  X.c  C
) ) `  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )  =  <. ( ( Id `  O
) `  ( 1st `  x ) ) ,  ( ( Id `  C ) `  ( 2nd `  x ) )
>. )
15716, 125oppcid 16381 . . . . . . . . . 10  |-  ( C  e.  Cat  ->  ( Id `  O )  =  ( Id `  C
) )
158138, 157syl 17 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  ( Id `  O )  =  ( Id `  C ) )
159158fveq1d 6193 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  ( ( Id
`  O ) `  ( 1st `  x ) )  =  ( ( Id `  C ) `
 ( 1st `  x
) ) )
160159opeq1d 4408 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  <. ( ( Id
`  O ) `  ( 1st `  x ) ) ,  ( ( Id `  C ) `
 ( 2nd `  x
) ) >.  =  <. ( ( Id `  C
) `  ( 1st `  x ) ) ,  ( ( Id `  C ) `  ( 2nd `  x ) )
>. )
161153, 156, 1603eqtrd 2660 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  ( ( Id
`  ( O  X.c  C
) ) `  x
)  =  <. (
( Id `  C
) `  ( 1st `  x ) ) ,  ( ( Id `  C ) `  ( 2nd `  x ) )
>. )
162152, 161fveq12d 6197 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  ( ( x ( 2nd `  M
) x ) `  ( ( Id `  ( O  X.c  C )
) `  x )
)  =  ( (
<. ( 1st `  x
) ,  ( 2nd `  x ) >. ( 2nd `  M ) <.
( 1st `  x
) ,  ( 2nd `  x ) >. ) `  <. ( ( Id
`  C ) `  ( 1st `  x ) ) ,  ( ( Id `  C ) `
 ( 2nd `  x
) ) >. )
)
16329adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  U  e.  V
)
16438ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  ( ( Hom f  `  C ) `  x
)  e.  U )
16530, 23, 163, 164setcid 16736 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  ( ( Id
`  D ) `  ( ( Hom f  `  C ) `
 x ) )  =  (  _I  |`  (
( Hom f  `  C ) `  x ) ) )
166151, 162, 1653eqtr4d 2666 . . . 4  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  ->  ( ( x ( 2nd `  M
) x ) `  ( ( Id `  ( O  X.c  C )
) `  x )
)  =  ( ( Id `  D ) `
 ( ( Hom f  `  C ) `  x
) ) )
16723ad2ant1 1082 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  ->  C  e.  Cat )
168293ad2ant1 1082 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  ->  U  e.  V )
169363ad2ant1 1082 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  ->  ran  ( Hom f  `  C )  C_  U )
170 simp21 1094 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  ->  x  e.  ( ( Base `  C )  X.  ( Base `  C
) ) )
171170, 55syl 17 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( 1st `  x
)  e.  ( Base `  C ) )
172170, 67syl 17 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( 2nd `  x
)  e.  ( Base `  C ) )
173 simp22 1095 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
y  e.  ( (
Base `  C )  X.  ( Base `  C
) ) )
174173, 51syl 17 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( 1st `  y
)  e.  ( Base `  C ) )
175173, 58syl 17 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( 2nd `  y
)  e.  ( Base `  C ) )
176 simp23 1096 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
z  e.  ( (
Base `  C )  X.  ( Base `  C
) ) )
177 xp1st 7198 . . . . . . 7  |-  ( z  e.  ( ( Base `  C )  X.  ( Base `  C ) )  ->  ( 1st `  z
)  e.  ( Base `  C ) )
178176, 177syl 17 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( 1st `  z
)  e.  ( Base `  C ) )
179 xp2nd 7199 . . . . . . 7  |-  ( z  e.  ( ( Base `  C )  X.  ( Base `  C ) )  ->  ( 2nd `  z
)  e.  ( Base `  C ) )
180176, 179syl 17 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( 2nd `  z
)  e.  ( Base `  C ) )
181 simp3l 1089 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y ) )
18215, 18, 116, 4, 20, 170, 173xpchom 16820 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( x ( Hom  `  ( O  X.c  C ) ) y )  =  ( ( ( 1st `  x ) ( Hom  `  O ) ( 1st `  y ) )  X.  ( ( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) ) ) )
183181, 182eleqtrd 2703 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
f  e.  ( ( ( 1st `  x
) ( Hom  `  O
) ( 1st `  y
) )  X.  (
( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) ) ) )
184 xp1st 7198 . . . . . . . 8  |-  ( f  e.  ( ( ( 1st `  x ) ( Hom  `  O
) ( 1st `  y
) )  X.  (
( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) ) )  -> 
( 1st `  f
)  e.  ( ( 1st `  x ) ( Hom  `  O
) ( 1st `  y
) ) )
185183, 184syl 17 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( 1st `  f
)  e.  ( ( 1st `  x ) ( Hom  `  O
) ( 1st `  y
) ) )
186185, 120syl6eleq 2711 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( 1st `  f
)  e.  ( ( 1st `  y ) ( Hom  `  C
) ( 1st `  x
) ) )
187 xp2nd 7199 . . . . . . 7  |-  ( f  e.  ( ( ( 1st `  x ) ( Hom  `  O
) ( 1st `  y
) )  X.  (
( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) ) )  -> 
( 2nd `  f
)  e.  ( ( 2nd `  x ) ( Hom  `  C
) ( 2nd `  y
) ) )
188183, 187syl 17 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( 2nd `  f
)  e.  ( ( 2nd `  x ) ( Hom  `  C
) ( 2nd `  y
) ) )
189 simp3r 1090 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
g  e.  ( y ( Hom  `  ( O  X.c  C ) ) z ) )
19015, 18, 116, 4, 20, 173, 176xpchom 16820 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( y ( Hom  `  ( O  X.c  C ) ) z )  =  ( ( ( 1st `  y ) ( Hom  `  O ) ( 1st `  z ) )  X.  ( ( 2nd `  y
) ( Hom  `  C
) ( 2nd `  z
) ) ) )
191189, 190eleqtrd 2703 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
g  e.  ( ( ( 1st `  y
) ( Hom  `  O
) ( 1st `  z
) )  X.  (
( 2nd `  y
) ( Hom  `  C
) ( 2nd `  z
) ) ) )
192 xp1st 7198 . . . . . . . 8  |-  ( g  e.  ( ( ( 1st `  y ) ( Hom  `  O
) ( 1st `  z
) )  X.  (
( 2nd `  y
) ( Hom  `  C
) ( 2nd `  z
) ) )  -> 
( 1st `  g
)  e.  ( ( 1st `  y ) ( Hom  `  O
) ( 1st `  z
) ) )
193191, 192syl 17 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( 1st `  g
)  e.  ( ( 1st `  y ) ( Hom  `  O
) ( 1st `  z
) ) )
1944, 16oppchom 16375 . . . . . . 7  |-  ( ( 1st `  y ) ( Hom  `  O
) ( 1st `  z
) )  =  ( ( 1st `  z
) ( Hom  `  C
) ( 1st `  y
) )
195193, 194syl6eleq 2711 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( 1st `  g
)  e.  ( ( 1st `  z ) ( Hom  `  C
) ( 1st `  y
) ) )
196 xp2nd 7199 . . . . . . 7  |-  ( g  e.  ( ( ( 1st `  y ) ( Hom  `  O
) ( 1st `  z
) )  X.  (
( 2nd `  y
) ( Hom  `  C
) ( 2nd `  z
) ) )  -> 
( 2nd `  g
)  e.  ( ( 2nd `  y ) ( Hom  `  C
) ( 2nd `  z
) ) )
197191, 196syl 17 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( 2nd `  g
)  e.  ( ( 2nd `  y ) ( Hom  `  C
) ( 2nd `  z
) ) )
1981, 16, 30, 167, 168, 169, 3, 4, 171, 172, 174, 175, 178, 180, 186, 188, 195, 197hofcllem 16898 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( ( ( 1st `  f ) ( <.
( 1st `  z
) ,  ( 1st `  y ) >. (comp `  C ) ( 1st `  x ) ) ( 1st `  g ) ) ( <. ( 1st `  x ) ,  ( 2nd `  x
) >. ( 2nd `  M
) <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
( ( 2nd `  g
) ( <. ( 2nd `  x ) ,  ( 2nd `  y
) >. (comp `  C
) ( 2nd `  z
) ) ( 2nd `  f ) ) )  =  ( ( ( 1st `  g ) ( <. ( 1st `  y
) ,  ( 2nd `  y ) >. ( 2nd `  M ) <.
( 1st `  z
) ,  ( 2nd `  z ) >. )
( 2nd `  g
) ) ( <.
( ( 1st `  x
) ( Hom  `  C
) ( 2nd `  x
) ) ,  ( ( 1st `  y
) ( Hom  `  C
) ( 2nd `  y
) ) >. (comp `  D ) ( ( 1st `  z ) ( Hom  `  C
) ( 2nd `  z
) ) ) ( ( 1st `  f
) ( <. ( 1st `  x ) ,  ( 2nd `  x
) >. ( 2nd `  M
) <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
( 2nd `  f
) ) ) )
199170, 62syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )
200 1st2nd2 7205 . . . . . . . . 9  |-  ( z  e.  ( ( Base `  C )  X.  ( Base `  C ) )  ->  z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
201176, 200syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
202199, 201oveq12d 6668 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( x ( 2nd `  M ) z )  =  ( <. ( 1st `  x ) ,  ( 2nd `  x
) >. ( 2nd `  M
) <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
)
203173, 79syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
204199, 203opeq12d 4410 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  ->  <. x ,  y >.  =  <. <. ( 1st `  x
) ,  ( 2nd `  x ) >. ,  <. ( 1st `  y ) ,  ( 2nd `  y
) >. >. )
205204, 201oveq12d 6668 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( <. x ,  y
>. (comp `  ( O  X.c  C ) ) z )  =  ( <. <. ( 1st `  x
) ,  ( 2nd `  x ) >. ,  <. ( 1st `  y ) ,  ( 2nd `  y
) >. >. (comp `  ( O  X.c  C ) ) <.
( 1st `  z
) ,  ( 2nd `  z ) >. )
)
206 1st2nd2 7205 . . . . . . . . . 10  |-  ( g  e.  ( ( ( 1st `  y ) ( Hom  `  O
) ( 1st `  z
) )  X.  (
( 2nd `  y
) ( Hom  `  C
) ( 2nd `  z
) ) )  -> 
g  =  <. ( 1st `  g ) ,  ( 2nd `  g
) >. )
207191, 206syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
g  =  <. ( 1st `  g ) ,  ( 2nd `  g
) >. )
208 1st2nd2 7205 . . . . . . . . . 10  |-  ( f  e.  ( ( ( 1st `  x ) ( Hom  `  O
) ( 1st `  y
) )  X.  (
( 2nd `  x
) ( Hom  `  C
) ( 2nd `  y
) ) )  -> 
f  =  <. ( 1st `  f ) ,  ( 2nd `  f
) >. )
209183, 208syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
f  =  <. ( 1st `  f ) ,  ( 2nd `  f
) >. )
210205, 207, 209oveq123d 6671 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( g ( <.
x ,  y >.
(comp `  ( O  X.c  C ) ) z ) f )  =  ( <. ( 1st `  g
) ,  ( 2nd `  g ) >. ( <. <. ( 1st `  x
) ,  ( 2nd `  x ) >. ,  <. ( 1st `  y ) ,  ( 2nd `  y
) >. >. (comp `  ( O  X.c  C ) ) <.
( 1st `  z
) ,  ( 2nd `  z ) >. ) <. ( 1st `  f
) ,  ( 2nd `  f ) >. )
)
211 eqid 2622 . . . . . . . . 9  |-  (comp `  O )  =  (comp `  O )
21215, 17, 3, 116, 4, 171, 172, 174, 175, 211, 5, 24, 178, 180, 185, 188, 193, 197xpcco2 16827 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( <. ( 1st `  g
) ,  ( 2nd `  g ) >. ( <. <. ( 1st `  x
) ,  ( 2nd `  x ) >. ,  <. ( 1st `  y ) ,  ( 2nd `  y
) >. >. (comp `  ( O  X.c  C ) ) <.
( 1st `  z
) ,  ( 2nd `  z ) >. ) <. ( 1st `  f
) ,  ( 2nd `  f ) >. )  =  <. ( ( 1st `  g ) ( <.
( 1st `  x
) ,  ( 1st `  y ) >. (comp `  O ) ( 1st `  z ) ) ( 1st `  f ) ) ,  ( ( 2nd `  g ) ( <. ( 2nd `  x
) ,  ( 2nd `  y ) >. (comp `  C ) ( 2nd `  z ) ) ( 2nd `  f ) ) >. )
2133, 5, 16, 171, 174, 178oppcco 16377 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( ( 1st `  g
) ( <. ( 1st `  x ) ,  ( 1st `  y
) >. (comp `  O
) ( 1st `  z
) ) ( 1st `  f ) )  =  ( ( 1st `  f
) ( <. ( 1st `  z ) ,  ( 1st `  y
) >. (comp `  C
) ( 1st `  x
) ) ( 1st `  g ) ) )
214213opeq1d 4408 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  ->  <. ( ( 1st `  g
) ( <. ( 1st `  x ) ,  ( 1st `  y
) >. (comp `  O
) ( 1st `  z
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  x ) ,  ( 2nd `  y
) >. (comp `  C
) ( 2nd `  z
) ) ( 2nd `  f ) ) >.  =  <. ( ( 1st `  f ) ( <.
( 1st `  z
) ,  ( 1st `  y ) >. (comp `  C ) ( 1st `  x ) ) ( 1st `  g ) ) ,  ( ( 2nd `  g ) ( <. ( 2nd `  x
) ,  ( 2nd `  y ) >. (comp `  C ) ( 2nd `  z ) ) ( 2nd `  f ) ) >. )
215210, 212, 2143eqtrd 2660 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( g ( <.
x ,  y >.
(comp `  ( O  X.c  C ) ) z ) f )  = 
<. ( ( 1st `  f
) ( <. ( 1st `  z ) ,  ( 1st `  y
) >. (comp `  C
) ( 1st `  x
) ) ( 1st `  g ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  x ) ,  ( 2nd `  y
) >. (comp `  C
) ( 2nd `  z
) ) ( 2nd `  f ) ) >.
)
216202, 215fveq12d 6197 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( ( x ( 2nd `  M ) z ) `  (
g ( <. x ,  y >. (comp `  ( O  X.c  C ) ) z ) f ) )  =  ( ( <. ( 1st `  x
) ,  ( 2nd `  x ) >. ( 2nd `  M ) <.
( 1st `  z
) ,  ( 2nd `  z ) >. ) `  <. ( ( 1st `  f ) ( <.
( 1st `  z
) ,  ( 1st `  y ) >. (comp `  C ) ( 1st `  x ) ) ( 1st `  g ) ) ,  ( ( 2nd `  g ) ( <. ( 2nd `  x
) ,  ( 2nd `  y ) >. (comp `  C ) ( 2nd `  z ) ) ( 2nd `  f ) ) >. ) )
217 df-ov 6653 . . . . . 6  |-  ( ( ( 1st `  f
) ( <. ( 1st `  z ) ,  ( 1st `  y
) >. (comp `  C
) ( 1st `  x
) ) ( 1st `  g ) ) (
<. ( 1st `  x
) ,  ( 2nd `  x ) >. ( 2nd `  M ) <.
( 1st `  z
) ,  ( 2nd `  z ) >. )
( ( 2nd `  g
) ( <. ( 2nd `  x ) ,  ( 2nd `  y
) >. (comp `  C
) ( 2nd `  z
) ) ( 2nd `  f ) ) )  =  ( ( <.
( 1st `  x
) ,  ( 2nd `  x ) >. ( 2nd `  M ) <.
( 1st `  z
) ,  ( 2nd `  z ) >. ) `  <. ( ( 1st `  f ) ( <.
( 1st `  z
) ,  ( 1st `  y ) >. (comp `  C ) ( 1st `  x ) ) ( 1st `  g ) ) ,  ( ( 2nd `  g ) ( <. ( 2nd `  x
) ,  ( 2nd `  y ) >. (comp `  C ) ( 2nd `  z ) ) ( 2nd `  f ) ) >. )
218216, 217syl6eqr 2674 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( ( x ( 2nd `  M ) z ) `  (
g ( <. x ,  y >. (comp `  ( O  X.c  C ) ) z ) f ) )  =  ( ( ( 1st `  f
) ( <. ( 1st `  z ) ,  ( 1st `  y
) >. (comp `  C
) ( 1st `  x
) ) ( 1st `  g ) ) (
<. ( 1st `  x
) ,  ( 2nd `  x ) >. ( 2nd `  M ) <.
( 1st `  z
) ,  ( 2nd `  z ) >. )
( ( 2nd `  g
) ( <. ( 2nd `  x ) ,  ( 2nd `  y
) >. (comp `  C
) ( 2nd `  z
) ) ( 2nd `  f ) ) ) )
219199fveq2d 6195 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( ( Hom f  `  C ) `
 x )  =  ( ( Hom f  `  C ) `
 <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
)
220219, 91syl6eqr 2674 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( ( Hom f  `  C ) `
 x )  =  ( ( 1st `  x
) ( Hom f  `  C ) ( 2nd `  x
) ) )
22133, 3, 4, 171, 172homfval 16352 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( ( 1st `  x
) ( Hom f  `  C ) ( 2nd `  x
) )  =  ( ( 1st `  x
) ( Hom  `  C
) ( 2nd `  x
) ) )
222220, 221eqtrd 2656 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( ( Hom f  `  C ) `
 x )  =  ( ( 1st `  x
) ( Hom  `  C
) ( 2nd `  x
) ) )
223203fveq2d 6195 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( ( Hom f  `  C ) `
 y )  =  ( ( Hom f  `  C ) `
 <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
)
224223, 99syl6eqr 2674 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( ( Hom f  `  C ) `
 y )  =  ( ( 1st `  y
) ( Hom f  `  C ) ( 2nd `  y
) ) )
22533, 3, 4, 174, 175homfval 16352 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( ( 1st `  y
) ( Hom f  `  C ) ( 2nd `  y
) )  =  ( ( 1st `  y
) ( Hom  `  C
) ( 2nd `  y
) ) )
226224, 225eqtrd 2656 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( ( Hom f  `  C ) `
 y )  =  ( ( 1st `  y
) ( Hom  `  C
) ( 2nd `  y
) ) )
227222, 226opeq12d 4410 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  ->  <. ( ( Hom f  `  C ) `
 x ) ,  ( ( Hom f  `  C ) `
 y ) >.  =  <. ( ( 1st `  x ) ( Hom  `  C ) ( 2nd `  x ) ) ,  ( ( 1st `  y
) ( Hom  `  C
) ( 2nd `  y
) ) >. )
228201fveq2d 6195 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( ( Hom f  `  C ) `
 z )  =  ( ( Hom f  `  C ) `
 <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
)
229 df-ov 6653 . . . . . . . . 9  |-  ( ( 1st `  z ) ( Hom f  `  C ) ( 2nd `  z ) )  =  ( ( Hom f  `  C ) `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
230228, 229syl6eqr 2674 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( ( Hom f  `  C ) `
 z )  =  ( ( 1st `  z
) ( Hom f  `  C ) ( 2nd `  z
) ) )
23133, 3, 4, 178, 180homfval 16352 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( ( 1st `  z
) ( Hom f  `  C ) ( 2nd `  z
) )  =  ( ( 1st `  z
) ( Hom  `  C
) ( 2nd `  z
) ) )
232230, 231eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( ( Hom f  `  C ) `
 z )  =  ( ( 1st `  z
) ( Hom  `  C
) ( 2nd `  z
) ) )
233227, 232oveq12d 6668 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( <. ( ( Hom f  `  C ) `  x
) ,  ( ( Hom f  `  C ) `  y
) >. (comp `  D
) ( ( Hom f  `  C ) `  z
) )  =  (
<. ( ( 1st `  x
) ( Hom  `  C
) ( 2nd `  x
) ) ,  ( ( 1st `  y
) ( Hom  `  C
) ( 2nd `  y
) ) >. (comp `  D ) ( ( 1st `  z ) ( Hom  `  C
) ( 2nd `  z
) ) ) )
234203, 201oveq12d 6668 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( y ( 2nd `  M ) z )  =  ( <. ( 1st `  y ) ,  ( 2nd `  y
) >. ( 2nd `  M
) <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
)
235234, 207fveq12d 6197 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( ( y ( 2nd `  M ) z ) `  g
)  =  ( (
<. ( 1st `  y
) ,  ( 2nd `  y ) >. ( 2nd `  M ) <.
( 1st `  z
) ,  ( 2nd `  z ) >. ) `  <. ( 1st `  g
) ,  ( 2nd `  g ) >. )
)
236 df-ov 6653 . . . . . . 7  |-  ( ( 1st `  g ) ( <. ( 1st `  y
) ,  ( 2nd `  y ) >. ( 2nd `  M ) <.
( 1st `  z
) ,  ( 2nd `  z ) >. )
( 2nd `  g
) )  =  ( ( <. ( 1st `  y
) ,  ( 2nd `  y ) >. ( 2nd `  M ) <.
( 1st `  z
) ,  ( 2nd `  z ) >. ) `  <. ( 1st `  g
) ,  ( 2nd `  g ) >. )
237235, 236syl6eqr 2674 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( ( y ( 2nd `  M ) z ) `  g
)  =  ( ( 1st `  g ) ( <. ( 1st `  y
) ,  ( 2nd `  y ) >. ( 2nd `  M ) <.
( 1st `  z
) ,  ( 2nd `  z ) >. )
( 2nd `  g
) ) )
238199, 203oveq12d 6668 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( x ( 2nd `  M ) y )  =  ( <. ( 1st `  x ) ,  ( 2nd `  x
) >. ( 2nd `  M
) <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
)
239238, 209fveq12d 6197 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( ( x ( 2nd `  M ) y ) `  f
)  =  ( (
<. ( 1st `  x
) ,  ( 2nd `  x ) >. ( 2nd `  M ) <.
( 1st `  y
) ,  ( 2nd `  y ) >. ) `  <. ( 1st `  f
) ,  ( 2nd `  f ) >. )
)
240 df-ov 6653 . . . . . . 7  |-  ( ( 1st `  f ) ( <. ( 1st `  x
) ,  ( 2nd `  x ) >. ( 2nd `  M ) <.
( 1st `  y
) ,  ( 2nd `  y ) >. )
( 2nd `  f
) )  =  ( ( <. ( 1st `  x
) ,  ( 2nd `  x ) >. ( 2nd `  M ) <.
( 1st `  y
) ,  ( 2nd `  y ) >. ) `  <. ( 1st `  f
) ,  ( 2nd `  f ) >. )
241239, 240syl6eqr 2674 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( ( x ( 2nd `  M ) y ) `  f
)  =  ( ( 1st `  f ) ( <. ( 1st `  x
) ,  ( 2nd `  x ) >. ( 2nd `  M ) <.
( 1st `  y
) ,  ( 2nd `  y ) >. )
( 2nd `  f
) ) )
242233, 237, 241oveq123d 6671 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( ( ( y ( 2nd `  M
) z ) `  g ) ( <.
( ( Hom f  `  C ) `
 x ) ,  ( ( Hom f  `  C ) `
 y ) >.
(comp `  D )
( ( Hom f  `  C ) `
 z ) ) ( ( x ( 2nd `  M ) y ) `  f
) )  =  ( ( ( 1st `  g
) ( <. ( 1st `  y ) ,  ( 2nd `  y
) >. ( 2nd `  M
) <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
( 2nd `  g
) ) ( <.
( ( 1st `  x
) ( Hom  `  C
) ( 2nd `  x
) ) ,  ( ( 1st `  y
) ( Hom  `  C
) ( 2nd `  y
) ) >. (comp `  D ) ( ( 1st `  z ) ( Hom  `  C
) ( 2nd `  z
) ) ) ( ( 1st `  f
) ( <. ( 1st `  x ) ,  ( 2nd `  x
) >. ( 2nd `  M
) <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
( 2nd `  f
) ) ) )
243198, 218, 2423eqtr4d 2666 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  C
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) )  /\  ( f  e.  ( x ( Hom  `  ( O  X.c  C ) ) y )  /\  g  e.  ( y
( Hom  `  ( O  X.c  C ) ) z ) ) )  -> 
( ( x ( 2nd `  M ) z ) `  (
g ( <. x ,  y >. (comp `  ( O  X.c  C ) ) z ) f ) )  =  ( ( ( y ( 2nd `  M ) z ) `  g
) ( <. (
( Hom f  `  C ) `  x ) ,  ( ( Hom f  `  C ) `  y ) >. (comp `  D ) ( ( Hom f  `  C ) `  z
) ) ( ( x ( 2nd `  M
) y ) `  f ) ) )
24418, 19, 20, 21, 22, 23, 24, 25, 28, 32, 41, 48, 124, 166, 243isfuncd 16525 . . 3  |-  ( ph  ->  ( Hom f  `  C ) ( ( O  X.c  C ) 
Func  D ) ( 2nd `  M ) )
245 df-br 4654 . . 3  |-  ( ( Hom f  `  C ) ( ( O  X.c  C )  Func  D
) ( 2nd `  M
)  <->  <. ( Hom f  `  C ) ,  ( 2nd `  M
) >.  e.  ( ( O  X.c  C )  Func  D
) )
246244, 245sylib 208 . 2  |-  ( ph  -> 
<. ( Hom f  `  C ) ,  ( 2nd `  M
) >.  e.  ( ( O  X.c  C )  Func  D
) )
24714, 246eqeltrd 2701 1  |-  ( ph  ->  M  e.  ( ( O  X.c  C )  Func  D
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    X. cxp 5112   ran crn 5115    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326   Hom f chomf 16327  oppCatcoppc 16371    Func cfunc 16514   SetCatcsetc 16725    X.c cxpc 16808  HomFchof 16888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-homf 16331  df-oppc 16372  df-func 16518  df-setc 16726  df-xpc 16812  df-hof 16890
This theorem is referenced by:  oppchofcl  16900  oppcyon  16909  yonedalem1  16912  yonedalem21  16913  yonedalem22  16918
  Copyright terms: Public domain W3C validator