MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem2 Structured version   Visualization version   Unicode version

Theorem zorn2lem2 9319
Description: Lemma for zorn2 9328. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3  |-  F  = recs ( ( f  e. 
_V  |->  ( iota_ v  e.  C  A. u  e.  C  -.  u w v ) ) )
zorn2lem.4  |-  C  =  { z  e.  A  |  A. g  e.  ran  f  g R z }
zorn2lem.5  |-  D  =  { z  e.  A  |  A. g  e.  ( F " x ) g R z }
Assertion
Ref Expression
zorn2lem2  |-  ( ( x  e.  On  /\  ( w  We  A  /\  D  =/=  (/) ) )  ->  ( y  e.  x  ->  ( F `  y ) R ( F `  x ) ) )
Distinct variable groups:    f, g, u, v, w, x, y, z, A    D, f, u, v, y    f, F, g, u, v, x, y, z    R, f, g, u, v, w, x, y, z    v, C
Allowed substitution hints:    C( x, y, z, w, u, f, g)    D( x, z, w, g)    F( w)

Proof of Theorem zorn2lem2
StepHypRef Expression
1 zorn2lem.3 . . . 4  |-  F  = recs ( ( f  e. 
_V  |->  ( iota_ v  e.  C  A. u  e.  C  -.  u w v ) ) )
2 zorn2lem.4 . . . 4  |-  C  =  { z  e.  A  |  A. g  e.  ran  f  g R z }
3 zorn2lem.5 . . . 4  |-  D  =  { z  e.  A  |  A. g  e.  ( F " x ) g R z }
41, 2, 3zorn2lem1 9318 . . 3  |-  ( ( x  e.  On  /\  ( w  We  A  /\  D  =/=  (/) ) )  ->  ( F `  x )  e.  D
)
5 breq2 4657 . . . . . 6  |-  ( z  =  ( F `  x )  ->  (
g R z  <->  g R
( F `  x
) ) )
65ralbidv 2986 . . . . 5  |-  ( z  =  ( F `  x )  ->  ( A. g  e.  ( F " x ) g R z  <->  A. g  e.  ( F " x
) g R ( F `  x ) ) )
76, 3elrab2 3366 . . . 4  |-  ( ( F `  x )  e.  D  <->  ( ( F `  x )  e.  A  /\  A. g  e.  ( F " x
) g R ( F `  x ) ) )
87simprbi 480 . . 3  |-  ( ( F `  x )  e.  D  ->  A. g  e.  ( F " x
) g R ( F `  x ) )
94, 8syl 17 . 2  |-  ( ( x  e.  On  /\  ( w  We  A  /\  D  =/=  (/) ) )  ->  A. g  e.  ( F " x ) g R ( F `
 x ) )
101tfr1 7493 . . . 4  |-  F  Fn  On
11 onss 6990 . . . 4  |-  ( x  e.  On  ->  x  C_  On )
12 fnfvima 6496 . . . . 5  |-  ( ( F  Fn  On  /\  x  C_  On  /\  y  e.  x )  ->  ( F `  y )  e.  ( F " x
) )
13123expia 1267 . . . 4  |-  ( ( F  Fn  On  /\  x  C_  On )  -> 
( y  e.  x  ->  ( F `  y
)  e.  ( F
" x ) ) )
1410, 11, 13sylancr 695 . . 3  |-  ( x  e.  On  ->  (
y  e.  x  -> 
( F `  y
)  e.  ( F
" x ) ) )
1514adantr 481 . 2  |-  ( ( x  e.  On  /\  ( w  We  A  /\  D  =/=  (/) ) )  ->  ( y  e.  x  ->  ( F `  y )  e.  ( F " x ) ) )
16 breq1 4656 . . 3  |-  ( g  =  ( F `  y )  ->  (
g R ( F `
 x )  <->  ( F `  y ) R ( F `  x ) ) )
1716rspccv 3306 . 2  |-  ( A. g  e.  ( F " x ) g R ( F `  x
)  ->  ( ( F `  y )  e.  ( F " x
)  ->  ( F `  y ) R ( F `  x ) ) )
189, 15, 17sylsyld 61 1  |-  ( ( x  e.  On  /\  ( w  We  A  /\  D  =/=  (/) ) )  ->  ( y  e.  x  ->  ( F `  y ) R ( F `  x ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729    We wwe 5072   ran crn 5115   "cima 5117   Oncon0 5723    Fn wfn 5883   ` cfv 5888   iota_crio 6610  recscrecs 7467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-wrecs 7407  df-recs 7468
This theorem is referenced by:  zorn2lem3  9320  zorn2lem6  9323
  Copyright terms: Public domain W3C validator