MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem5 Structured version   Visualization version   Unicode version

Theorem zorn2lem5 9322
Description: Lemma for zorn2 9328. (Contributed by NM, 4-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3  |-  F  = recs ( ( f  e. 
_V  |->  ( iota_ v  e.  C  A. u  e.  C  -.  u w v ) ) )
zorn2lem.4  |-  C  =  { z  e.  A  |  A. g  e.  ran  f  g R z }
zorn2lem.5  |-  D  =  { z  e.  A  |  A. g  e.  ( F " x ) g R z }
zorn2lem.7  |-  H  =  { z  e.  A  |  A. g  e.  ( F " y ) g R z }
Assertion
Ref Expression
zorn2lem5  |-  ( ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  -> 
( F " x
)  C_  A )
Distinct variable groups:    f, g, u, v, w, x, y, z, A    D, f, u, v, y    f, F, g, u, v, x, y, z    R, f, g, u, v, w, x, y, z    v, C    x, H, u, v, f
Allowed substitution hints:    C( x, y, z, w, u, f, g)    D( x, z, w, g)    F( w)    H( y,
z, w, g)

Proof of Theorem zorn2lem5
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 zorn2lem.3 . . . . . 6  |-  F  = recs ( ( f  e. 
_V  |->  ( iota_ v  e.  C  A. u  e.  C  -.  u w v ) ) )
21tfr1 7493 . . . . 5  |-  F  Fn  On
3 fnfun 5988 . . . . 5  |-  ( F  Fn  On  ->  Fun  F )
42, 3ax-mp 5 . . . 4  |-  Fun  F
5 fvelima 6248 . . . 4  |-  ( ( Fun  F  /\  s  e.  ( F " x
) )  ->  E. y  e.  x  ( F `  y )  =  s )
64, 5mpan 706 . . 3  |-  ( s  e.  ( F "
x )  ->  E. y  e.  x  ( F `  y )  =  s )
7 nfv 1843 . . . . 5  |-  F/ y ( w  We  A  /\  x  e.  On )
8 nfra1 2941 . . . . 5  |-  F/ y A. y  e.  x  H  =/=  (/)
97, 8nfan 1828 . . . 4  |-  F/ y ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )
10 nfv 1843 . . . 4  |-  F/ y  s  e.  A
11 df-ral 2917 . . . . . 6  |-  ( A. y  e.  x  H  =/=  (/)  <->  A. y ( y  e.  x  ->  H  =/=  (/) ) )
12 onelon 5748 . . . . . . . . . . . . 13  |-  ( ( x  e.  On  /\  y  e.  x )  ->  y  e.  On )
13 zorn2lem.7 . . . . . . . . . . . . . . . 16  |-  H  =  { z  e.  A  |  A. g  e.  ( F " y ) g R z }
14 ssrab2 3687 . . . . . . . . . . . . . . . 16  |-  { z  e.  A  |  A. g  e.  ( F " y ) g R z }  C_  A
1513, 14eqsstri 3635 . . . . . . . . . . . . . . 15  |-  H  C_  A
16 zorn2lem.4 . . . . . . . . . . . . . . . 16  |-  C  =  { z  e.  A  |  A. g  e.  ran  f  g R z }
171, 16, 13zorn2lem1 9318 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  On  /\  ( w  We  A  /\  H  =/=  (/) ) )  ->  ( F `  y )  e.  H
)
1815, 17sseldi 3601 . . . . . . . . . . . . . 14  |-  ( ( y  e.  On  /\  ( w  We  A  /\  H  =/=  (/) ) )  ->  ( F `  y )  e.  A
)
19 eleq1 2689 . . . . . . . . . . . . . 14  |-  ( ( F `  y )  =  s  ->  (
( F `  y
)  e.  A  <->  s  e.  A ) )
2018, 19syl5ib 234 . . . . . . . . . . . . 13  |-  ( ( F `  y )  =  s  ->  (
( y  e.  On  /\  ( w  We  A  /\  H  =/=  (/) ) )  ->  s  e.  A
) )
2112, 20sylani 686 . . . . . . . . . . . 12  |-  ( ( F `  y )  =  s  ->  (
( ( x  e.  On  /\  y  e.  x )  /\  (
w  We  A  /\  H  =/=  (/) ) )  -> 
s  e.  A ) )
2221com12 32 . . . . . . . . . . 11  |-  ( ( ( x  e.  On  /\  y  e.  x )  /\  ( w  We  A  /\  H  =/=  (/) ) )  ->  (
( F `  y
)  =  s  -> 
s  e.  A ) )
2322exp43 640 . . . . . . . . . 10  |-  ( x  e.  On  ->  (
y  e.  x  -> 
( w  We  A  ->  ( H  =/=  (/)  ->  (
( F `  y
)  =  s  -> 
s  e.  A ) ) ) ) )
2423com3r 87 . . . . . . . . 9  |-  ( w  We  A  ->  (
x  e.  On  ->  ( y  e.  x  -> 
( H  =/=  (/)  ->  (
( F `  y
)  =  s  -> 
s  e.  A ) ) ) ) )
2524imp 445 . . . . . . . 8  |-  ( ( w  We  A  /\  x  e.  On )  ->  ( y  e.  x  ->  ( H  =/=  (/)  ->  (
( F `  y
)  =  s  -> 
s  e.  A ) ) ) )
2625a2d 29 . . . . . . 7  |-  ( ( w  We  A  /\  x  e.  On )  ->  ( ( y  e.  x  ->  H  =/=  (/) )  ->  ( y  e.  x  ->  ( ( F `  y )  =  s  ->  s  e.  A ) ) ) )
2726spsd 2057 . . . . . 6  |-  ( ( w  We  A  /\  x  e.  On )  ->  ( A. y ( y  e.  x  ->  H  =/=  (/) )  ->  (
y  e.  x  -> 
( ( F `  y )  =  s  ->  s  e.  A
) ) ) )
2811, 27syl5bi 232 . . . . 5  |-  ( ( w  We  A  /\  x  e.  On )  ->  ( A. y  e.  x  H  =/=  (/)  ->  (
y  e.  x  -> 
( ( F `  y )  =  s  ->  s  e.  A
) ) ) )
2928imp 445 . . . 4  |-  ( ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  -> 
( y  e.  x  ->  ( ( F `  y )  =  s  ->  s  e.  A
) ) )
309, 10, 29rexlimd 3026 . . 3  |-  ( ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  -> 
( E. y  e.  x  ( F `  y )  =  s  ->  s  e.  A
) )
316, 30syl5 34 . 2  |-  ( ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  -> 
( s  e.  ( F " x )  ->  s  e.  A
) )
3231ssrdv 3609 1  |-  ( ( ( w  We  A  /\  x  e.  On )  /\  A. y  e.  x  H  =/=  (/) )  -> 
( F " x
)  C_  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729    We wwe 5072   ran crn 5115   "cima 5117   Oncon0 5723   Fun wfun 5882    Fn wfn 5883   ` cfv 5888   iota_crio 6610  recscrecs 7467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-wrecs 7407  df-recs 7468
This theorem is referenced by:  zorn2lem6  9323  zorn2lem7  9324
  Copyright terms: Public domain W3C validator