![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0lmhm | Structured version Visualization version GIF version |
Description: The constant zero linear function between two modules. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
0lmhm.z | ⊢ 0 = (0g‘𝑁) |
0lmhm.b | ⊢ 𝐵 = (Base‘𝑀) |
0lmhm.s | ⊢ 𝑆 = (Scalar‘𝑀) |
0lmhm.t | ⊢ 𝑇 = (Scalar‘𝑁) |
Ref | Expression |
---|---|
0lmhm | ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → (𝐵 × { 0 }) ∈ (𝑀 LMHom 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lmhm.b | . 2 ⊢ 𝐵 = (Base‘𝑀) | |
2 | eqid 2622 | . 2 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
3 | eqid 2622 | . 2 ⊢ ( ·𝑠 ‘𝑁) = ( ·𝑠 ‘𝑁) | |
4 | 0lmhm.s | . 2 ⊢ 𝑆 = (Scalar‘𝑀) | |
5 | 0lmhm.t | . 2 ⊢ 𝑇 = (Scalar‘𝑁) | |
6 | eqid 2622 | . 2 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
7 | simp1 1061 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑀 ∈ LMod) | |
8 | simp2 1062 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑁 ∈ LMod) | |
9 | simp3 1063 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑆 = 𝑇) | |
10 | 9 | eqcomd 2628 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑇 = 𝑆) |
11 | lmodgrp 18870 | . . . 4 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) | |
12 | lmodgrp 18870 | . . . 4 ⊢ (𝑁 ∈ LMod → 𝑁 ∈ Grp) | |
13 | 0lmhm.z | . . . . 5 ⊢ 0 = (0g‘𝑁) | |
14 | 13, 1 | 0ghm 17674 | . . . 4 ⊢ ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁)) |
15 | 11, 12, 14 | syl2an 494 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁)) |
16 | 15 | 3adant3 1081 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁)) |
17 | simpl2 1065 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑁 ∈ LMod) | |
18 | simprl 794 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ (Base‘𝑆)) | |
19 | simpl3 1066 | . . . . . 6 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑆 = 𝑇) | |
20 | 19 | fveq2d 6195 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → (Base‘𝑆) = (Base‘𝑇)) |
21 | 18, 20 | eleqtrd 2703 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ (Base‘𝑇)) |
22 | eqid 2622 | . . . . 5 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
23 | 5, 3, 22, 13 | lmodvs0 18897 | . . . 4 ⊢ ((𝑁 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑇)) → (𝑥( ·𝑠 ‘𝑁) 0 ) = 0 ) |
24 | 17, 21, 23 | syl2anc 693 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑁) 0 ) = 0 ) |
25 | fvex 6201 | . . . . . . 7 ⊢ (0g‘𝑁) ∈ V | |
26 | 13, 25 | eqeltri 2697 | . . . . . 6 ⊢ 0 ∈ V |
27 | 26 | fvconst2 6469 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → ((𝐵 × { 0 })‘𝑦) = 0 ) |
28 | 27 | oveq2d 6666 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → (𝑥( ·𝑠 ‘𝑁)((𝐵 × { 0 })‘𝑦)) = (𝑥( ·𝑠 ‘𝑁) 0 )) |
29 | 28 | ad2antll 765 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑁)((𝐵 × { 0 })‘𝑦)) = (𝑥( ·𝑠 ‘𝑁) 0 )) |
30 | simpl1 1064 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑀 ∈ LMod) | |
31 | simprr 796 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | |
32 | 1, 4, 2, 6 | lmodvscl 18880 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵) → (𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵) |
33 | 30, 18, 31, 32 | syl3anc 1326 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵) |
34 | 26 | fvconst2 6469 | . . . 4 ⊢ ((𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵 → ((𝐵 × { 0 })‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = 0 ) |
35 | 33, 34 | syl 17 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → ((𝐵 × { 0 })‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = 0 ) |
36 | 24, 29, 35 | 3eqtr4rd 2667 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → ((𝐵 × { 0 })‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = (𝑥( ·𝑠 ‘𝑁)((𝐵 × { 0 })‘𝑦))) |
37 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 16, 36 | islmhmd 19039 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → (𝐵 × { 0 }) ∈ (𝑀 LMHom 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 Vcvv 3200 {csn 4177 × cxp 5112 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 Scalarcsca 15944 ·𝑠 cvsca 15945 0gc0g 16100 Grpcgrp 17422 GrpHom cghm 17657 LModclmod 18863 LMHom clmhm 19019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-grp 17425 df-ghm 17658 df-mgp 18490 df-ring 18549 df-lmod 18865 df-lmhm 19022 |
This theorem is referenced by: 0nmhm 22559 mendring 37762 |
Copyright terms: Public domain | W3C validator |