![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4sqlem8 | Structured version Visualization version GIF version |
Description: Lemma for 4sq 15668. (Contributed by Mario Carneiro, 15-Jul-2014.) |
Ref | Expression |
---|---|
4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
Ref | Expression |
---|---|
4sqlem8 | ⊢ (𝜑 → 𝑀 ∥ ((𝐴↑2) − (𝐵↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sqlem5.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | 4sqlem5.3 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
3 | 4sqlem5.4 | . . . . 5 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
4 | 1, 2, 3 | 4sqlem5 15646 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
5 | 4 | simprd 479 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝑀) ∈ ℤ) |
6 | 2 | nnzd 11481 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
7 | 2 | nnne0d 11065 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 0) |
8 | 4 | simpld 475 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
9 | 1, 8 | zsubcld 11487 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) |
10 | dvdsval2 14986 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (𝐴 − 𝐵) ∈ ℤ) → (𝑀 ∥ (𝐴 − 𝐵) ↔ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) | |
11 | 6, 7, 9, 10 | syl3anc 1326 | . . 3 ⊢ (𝜑 → (𝑀 ∥ (𝐴 − 𝐵) ↔ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
12 | 5, 11 | mpbird 247 | . 2 ⊢ (𝜑 → 𝑀 ∥ (𝐴 − 𝐵)) |
13 | 1, 8 | zaddcld 11486 | . . . 4 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℤ) |
14 | dvdsmul2 15004 | . . . 4 ⊢ (((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴 − 𝐵) ∈ ℤ) → (𝐴 − 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴 − 𝐵))) | |
15 | 13, 9, 14 | syl2anc 693 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴 − 𝐵))) |
16 | 1 | zcnd 11483 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
17 | 8 | zcnd 11483 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
18 | subsq 12972 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) | |
19 | 16, 17, 18 | syl2anc 693 | . . 3 ⊢ (𝜑 → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) |
20 | 15, 19 | breqtrrd 4681 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) ∥ ((𝐴↑2) − (𝐵↑2))) |
21 | zsqcl 12934 | . . . . 5 ⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ) | |
22 | 1, 21 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴↑2) ∈ ℤ) |
23 | zsqcl 12934 | . . . . 5 ⊢ (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ) | |
24 | 8, 23 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐵↑2) ∈ ℤ) |
25 | 22, 24 | zsubcld 11487 | . . 3 ⊢ (𝜑 → ((𝐴↑2) − (𝐵↑2)) ∈ ℤ) |
26 | dvdstr 15018 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ (𝐴 − 𝐵) ∈ ℤ ∧ ((𝐴↑2) − (𝐵↑2)) ∈ ℤ) → ((𝑀 ∥ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) ∥ ((𝐴↑2) − (𝐵↑2))) → 𝑀 ∥ ((𝐴↑2) − (𝐵↑2)))) | |
27 | 6, 9, 25, 26 | syl3anc 1326 | . 2 ⊢ (𝜑 → ((𝑀 ∥ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) ∥ ((𝐴↑2) − (𝐵↑2))) → 𝑀 ∥ ((𝐴↑2) − (𝐵↑2)))) |
28 | 12, 20, 27 | mp2and 715 | 1 ⊢ (𝜑 → 𝑀 ∥ ((𝐴↑2) − (𝐵↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 class class class wbr 4653 (class class class)co 6650 ℂcc 9934 0cc0 9936 + caddc 9939 · cmul 9941 − cmin 10266 / cdiv 10684 ℕcn 11020 2c2 11070 ℤcz 11377 mod cmo 12668 ↑cexp 12860 ∥ cdvds 14983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-dvds 14984 |
This theorem is referenced by: 4sqlem14 15662 2sqlem8 25151 |
Copyright terms: Public domain | W3C validator |