| Step | Hyp | Ref
| Expression |
| 1 | | 2sq.1 |
. 2
⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) |
| 2 | | 2sqlem8.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘2)) |
| 3 | | eluz2b3 11762 |
. . . 4
⊢ (𝑀 ∈
(ℤ≥‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1)) |
| 4 | 2, 3 | sylib 208 |
. . 3
⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1)) |
| 5 | 4 | simpld 475 |
. 2
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 6 | | 2sqlem9.7 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∥ 𝑁) |
| 7 | | eluzelz 11697 |
. . . . . . . . 9
⊢ (𝑀 ∈
(ℤ≥‘2) → 𝑀 ∈ ℤ) |
| 8 | 2, 7 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 9 | | 2sqlem8.n |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 10 | 9 | nnzd 11481 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 11 | | 2sqlem8.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 12 | | 2sqlem8.c |
. . . . . . . . . . . 12
⊢ 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
| 13 | 11, 5, 12 | 4sqlem5 15646 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶 ∈ ℤ ∧ ((𝐴 − 𝐶) / 𝑀) ∈ ℤ)) |
| 14 | 13 | simpld 475 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ ℤ) |
| 15 | | zsqcl 12934 |
. . . . . . . . . 10
⊢ (𝐶 ∈ ℤ → (𝐶↑2) ∈
ℤ) |
| 16 | 14, 15 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶↑2) ∈ ℤ) |
| 17 | | 2sqlem8.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 18 | | 2sqlem8.d |
. . . . . . . . . . . 12
⊢ 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
| 19 | 17, 5, 18 | 4sqlem5 15646 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐷 ∈ ℤ ∧ ((𝐵 − 𝐷) / 𝑀) ∈ ℤ)) |
| 20 | 19 | simpld 475 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ ℤ) |
| 21 | | zsqcl 12934 |
. . . . . . . . . 10
⊢ (𝐷 ∈ ℤ → (𝐷↑2) ∈
ℤ) |
| 22 | 20, 21 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷↑2) ∈ ℤ) |
| 23 | 16, 22 | zaddcld 11486 |
. . . . . . . 8
⊢ (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℤ) |
| 24 | 11, 5, 12 | 4sqlem8 15649 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∥ ((𝐴↑2) − (𝐶↑2))) |
| 25 | 17, 5, 18 | 4sqlem8 15649 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∥ ((𝐵↑2) − (𝐷↑2))) |
| 26 | | zsqcl 12934 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈
ℤ) |
| 27 | 11, 26 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴↑2) ∈ ℤ) |
| 28 | 27, 16 | zsubcld 11487 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐴↑2) − (𝐶↑2)) ∈ ℤ) |
| 29 | | zsqcl 12934 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℤ → (𝐵↑2) ∈
ℤ) |
| 30 | 17, 29 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐵↑2) ∈ ℤ) |
| 31 | 30, 22 | zsubcld 11487 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐵↑2) − (𝐷↑2)) ∈ ℤ) |
| 32 | | dvds2add 15015 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ ((𝐴↑2) − (𝐶↑2)) ∈ ℤ ∧
((𝐵↑2) − (𝐷↑2)) ∈ ℤ) →
((𝑀 ∥ ((𝐴↑2) − (𝐶↑2)) ∧ 𝑀 ∥ ((𝐵↑2) − (𝐷↑2))) → 𝑀 ∥ (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2))))) |
| 33 | 8, 28, 31, 32 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑀 ∥ ((𝐴↑2) − (𝐶↑2)) ∧ 𝑀 ∥ ((𝐵↑2) − (𝐷↑2))) → 𝑀 ∥ (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2))))) |
| 34 | 24, 25, 33 | mp2and 715 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∥ (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2)))) |
| 35 | | 2sqlem8.4 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 = ((𝐴↑2) + (𝐵↑2))) |
| 36 | 35 | oveq1d 6665 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 − ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) − ((𝐶↑2) + (𝐷↑2)))) |
| 37 | 27 | zcnd 11483 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴↑2) ∈ ℂ) |
| 38 | 30 | zcnd 11483 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵↑2) ∈ ℂ) |
| 39 | 16 | zcnd 11483 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶↑2) ∈ ℂ) |
| 40 | 22 | zcnd 11483 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐷↑2) ∈ ℂ) |
| 41 | 37, 38, 39, 40 | addsub4d 10439 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝐴↑2) + (𝐵↑2)) − ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2)))) |
| 42 | 36, 41 | eqtrd 2656 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 − ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2)))) |
| 43 | 34, 42 | breqtrrd 4681 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∥ (𝑁 − ((𝐶↑2) + (𝐷↑2)))) |
| 44 | | dvdssub2 15023 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝐶↑2) + (𝐷↑2)) ∈ ℤ) ∧ 𝑀 ∥ (𝑁 − ((𝐶↑2) + (𝐷↑2)))) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ ((𝐶↑2) + (𝐷↑2)))) |
| 45 | 8, 10, 23, 43, 44 | syl31anc 1329 |
. . . . . . 7
⊢ (𝜑 → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ ((𝐶↑2) + (𝐷↑2)))) |
| 46 | 6, 45 | mpbid 222 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∥ ((𝐶↑2) + (𝐷↑2))) |
| 47 | | 2sqlem7.2 |
. . . . . . . . . . . 12
⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} |
| 48 | | 2sqlem9.5 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) |
| 49 | | 2sqlem8.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) |
| 50 | 1, 47, 48, 6, 9, 2,
11, 17, 49, 35, 12, 18 | 2sqlem8a 25150 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ) |
| 51 | 50 | nnzd 11481 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶 gcd 𝐷) ∈ ℤ) |
| 52 | | zsqcl2 12941 |
. . . . . . . . . 10
⊢ ((𝐶 gcd 𝐷) ∈ ℤ → ((𝐶 gcd 𝐷)↑2) ∈
ℕ0) |
| 53 | 51, 52 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈
ℕ0) |
| 54 | 53 | nn0cnd 11353 |
. . . . . . . 8
⊢ (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℂ) |
| 55 | | 2sqlem8.e |
. . . . . . . . . . 11
⊢ 𝐸 = (𝐶 / (𝐶 gcd 𝐷)) |
| 56 | | gcddvds 15225 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝐶 gcd 𝐷) ∥ 𝐶 ∧ (𝐶 gcd 𝐷) ∥ 𝐷)) |
| 57 | 14, 20, 56 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐶 gcd 𝐷) ∥ 𝐶 ∧ (𝐶 gcd 𝐷) ∥ 𝐷)) |
| 58 | 57 | simpld 475 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 gcd 𝐷) ∥ 𝐶) |
| 59 | 50 | nnne0d 11065 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐶 gcd 𝐷) ≠ 0) |
| 60 | | dvdsval2 14986 |
. . . . . . . . . . . . 13
⊢ (((𝐶 gcd 𝐷) ∈ ℤ ∧ (𝐶 gcd 𝐷) ≠ 0 ∧ 𝐶 ∈ ℤ) → ((𝐶 gcd 𝐷) ∥ 𝐶 ↔ (𝐶 / (𝐶 gcd 𝐷)) ∈ ℤ)) |
| 61 | 51, 59, 14, 60 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐶 gcd 𝐷) ∥ 𝐶 ↔ (𝐶 / (𝐶 gcd 𝐷)) ∈ ℤ)) |
| 62 | 58, 61 | mpbid 222 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶 / (𝐶 gcd 𝐷)) ∈ ℤ) |
| 63 | 55, 62 | syl5eqel 2705 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∈ ℤ) |
| 64 | | zsqcl2 12941 |
. . . . . . . . . 10
⊢ (𝐸 ∈ ℤ → (𝐸↑2) ∈
ℕ0) |
| 65 | 63, 64 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸↑2) ∈
ℕ0) |
| 66 | 65 | nn0cnd 11353 |
. . . . . . . 8
⊢ (𝜑 → (𝐸↑2) ∈ ℂ) |
| 67 | | 2sqlem8.f |
. . . . . . . . . . 11
⊢ 𝐹 = (𝐷 / (𝐶 gcd 𝐷)) |
| 68 | 57 | simprd 479 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 gcd 𝐷) ∥ 𝐷) |
| 69 | | dvdsval2 14986 |
. . . . . . . . . . . . 13
⊢ (((𝐶 gcd 𝐷) ∈ ℤ ∧ (𝐶 gcd 𝐷) ≠ 0 ∧ 𝐷 ∈ ℤ) → ((𝐶 gcd 𝐷) ∥ 𝐷 ↔ (𝐷 / (𝐶 gcd 𝐷)) ∈ ℤ)) |
| 70 | 51, 59, 20, 69 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐶 gcd 𝐷) ∥ 𝐷 ↔ (𝐷 / (𝐶 gcd 𝐷)) ∈ ℤ)) |
| 71 | 68, 70 | mpbid 222 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐷 / (𝐶 gcd 𝐷)) ∈ ℤ) |
| 72 | 67, 71 | syl5eqel 2705 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ ℤ) |
| 73 | | zsqcl2 12941 |
. . . . . . . . . 10
⊢ (𝐹 ∈ ℤ → (𝐹↑2) ∈
ℕ0) |
| 74 | 72, 73 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹↑2) ∈
ℕ0) |
| 75 | 74 | nn0cnd 11353 |
. . . . . . . 8
⊢ (𝜑 → (𝐹↑2) ∈ ℂ) |
| 76 | 54, 66, 75 | adddid 10064 |
. . . . . . 7
⊢ (𝜑 → (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))) = ((((𝐶 gcd 𝐷)↑2) · (𝐸↑2)) + (((𝐶 gcd 𝐷)↑2) · (𝐹↑2)))) |
| 77 | 51 | zcnd 11483 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶 gcd 𝐷) ∈ ℂ) |
| 78 | 63 | zcnd 11483 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∈ ℂ) |
| 79 | 77, 78 | sqmuld 13020 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐶 gcd 𝐷) · 𝐸)↑2) = (((𝐶 gcd 𝐷)↑2) · (𝐸↑2))) |
| 80 | 55 | oveq2i 6661 |
. . . . . . . . . . 11
⊢ ((𝐶 gcd 𝐷) · 𝐸) = ((𝐶 gcd 𝐷) · (𝐶 / (𝐶 gcd 𝐷))) |
| 81 | 14 | zcnd 11483 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 82 | 81, 77, 59 | divcan2d 10803 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐶 gcd 𝐷) · (𝐶 / (𝐶 gcd 𝐷))) = 𝐶) |
| 83 | 80, 82 | syl5eq 2668 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐶 gcd 𝐷) · 𝐸) = 𝐶) |
| 84 | 83 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐶 gcd 𝐷) · 𝐸)↑2) = (𝐶↑2)) |
| 85 | 79, 84 | eqtr3d 2658 |
. . . . . . . 8
⊢ (𝜑 → (((𝐶 gcd 𝐷)↑2) · (𝐸↑2)) = (𝐶↑2)) |
| 86 | 72 | zcnd 11483 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ ℂ) |
| 87 | 77, 86 | sqmuld 13020 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐶 gcd 𝐷) · 𝐹)↑2) = (((𝐶 gcd 𝐷)↑2) · (𝐹↑2))) |
| 88 | 67 | oveq2i 6661 |
. . . . . . . . . . 11
⊢ ((𝐶 gcd 𝐷) · 𝐹) = ((𝐶 gcd 𝐷) · (𝐷 / (𝐶 gcd 𝐷))) |
| 89 | 20 | zcnd 11483 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 90 | 89, 77, 59 | divcan2d 10803 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐶 gcd 𝐷) · (𝐷 / (𝐶 gcd 𝐷))) = 𝐷) |
| 91 | 88, 90 | syl5eq 2668 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐶 gcd 𝐷) · 𝐹) = 𝐷) |
| 92 | 91 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐶 gcd 𝐷) · 𝐹)↑2) = (𝐷↑2)) |
| 93 | 87, 92 | eqtr3d 2658 |
. . . . . . . 8
⊢ (𝜑 → (((𝐶 gcd 𝐷)↑2) · (𝐹↑2)) = (𝐷↑2)) |
| 94 | 85, 93 | oveq12d 6668 |
. . . . . . 7
⊢ (𝜑 → ((((𝐶 gcd 𝐷)↑2) · (𝐸↑2)) + (((𝐶 gcd 𝐷)↑2) · (𝐹↑2))) = ((𝐶↑2) + (𝐷↑2))) |
| 95 | 76, 94 | eqtrd 2656 |
. . . . . 6
⊢ (𝜑 → (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))) = ((𝐶↑2) + (𝐷↑2))) |
| 96 | 46, 95 | breqtrrd 4681 |
. . . . 5
⊢ (𝜑 → 𝑀 ∥ (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2)))) |
| 97 | | zsqcl 12934 |
. . . . . . . 8
⊢ ((𝐶 gcd 𝐷) ∈ ℤ → ((𝐶 gcd 𝐷)↑2) ∈ ℤ) |
| 98 | 51, 97 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℤ) |
| 99 | | gcdcom 15235 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ ((𝐶 gcd 𝐷)↑2) ∈ ℤ) → (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = (((𝐶 gcd 𝐷)↑2) gcd 𝑀)) |
| 100 | 8, 98, 99 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = (((𝐶 gcd 𝐷)↑2) gcd 𝑀)) |
| 101 | | gcddvds 15225 |
. . . . . . . . . . . . . 14
⊢ (((𝐶 gcd 𝐷) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀)) |
| 102 | 51, 8, 101 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀)) |
| 103 | 102 | simpld 475 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷)) |
| 104 | 51, 8 | gcdcld 15230 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∈
ℕ0) |
| 105 | 104 | nn0zd 11480 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ) |
| 106 | | dvdstr 15018 |
. . . . . . . . . . . . 13
⊢ ((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ (𝐶 gcd 𝐷) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ (𝐶 gcd 𝐷) ∥ 𝐶) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶)) |
| 107 | 105, 51, 14, 106 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ (𝐶 gcd 𝐷) ∥ 𝐶) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶)) |
| 108 | 103, 58, 107 | mp2and 715 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶) |
| 109 | 102 | simprd 479 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀) |
| 110 | 13 | simprd 479 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐴 − 𝐶) / 𝑀) ∈ ℤ) |
| 111 | 5 | nnne0d 11065 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ≠ 0) |
| 112 | 11, 14 | zsubcld 11487 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴 − 𝐶) ∈ ℤ) |
| 113 | | dvdsval2 14986 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (𝐴 − 𝐶) ∈ ℤ) → (𝑀 ∥ (𝐴 − 𝐶) ↔ ((𝐴 − 𝐶) / 𝑀) ∈ ℤ)) |
| 114 | 8, 111, 112, 113 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑀 ∥ (𝐴 − 𝐶) ↔ ((𝐴 − 𝐶) / 𝑀) ∈ ℤ)) |
| 115 | 110, 114 | mpbird 247 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∥ (𝐴 − 𝐶)) |
| 116 | | dvdstr 15018 |
. . . . . . . . . . . . . 14
⊢ ((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝐴 − 𝐶) ∈ ℤ) → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀 ∧ 𝑀 ∥ (𝐴 − 𝐶)) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐴 − 𝐶))) |
| 117 | 105, 8, 112, 116 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀 ∧ 𝑀 ∥ (𝐴 − 𝐶)) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐴 − 𝐶))) |
| 118 | 109, 115,
117 | mp2and 715 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐴 − 𝐶)) |
| 119 | | dvdssub2 15023 |
. . . . . . . . . . . 12
⊢
(((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐴 − 𝐶)) → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶)) |
| 120 | 105, 11, 14, 118, 119 | syl31anc 1329 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶)) |
| 121 | 108, 120 | mpbird 247 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴) |
| 122 | | dvdstr 15018 |
. . . . . . . . . . . . 13
⊢ ((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ (𝐶 gcd 𝐷) ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ (𝐶 gcd 𝐷) ∥ 𝐷) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷)) |
| 123 | 105, 51, 20, 122 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ (𝐶 gcd 𝐷) ∥ 𝐷) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷)) |
| 124 | 103, 68, 123 | mp2and 715 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷) |
| 125 | 19 | simprd 479 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐵 − 𝐷) / 𝑀) ∈ ℤ) |
| 126 | 17, 20 | zsubcld 11487 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐵 − 𝐷) ∈ ℤ) |
| 127 | | dvdsval2 14986 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (𝐵 − 𝐷) ∈ ℤ) → (𝑀 ∥ (𝐵 − 𝐷) ↔ ((𝐵 − 𝐷) / 𝑀) ∈ ℤ)) |
| 128 | 8, 111, 126, 127 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑀 ∥ (𝐵 − 𝐷) ↔ ((𝐵 − 𝐷) / 𝑀) ∈ ℤ)) |
| 129 | 125, 128 | mpbird 247 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∥ (𝐵 − 𝐷)) |
| 130 | | dvdstr 15018 |
. . . . . . . . . . . . . 14
⊢ ((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝐵 − 𝐷) ∈ ℤ) → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀 ∧ 𝑀 ∥ (𝐵 − 𝐷)) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐵 − 𝐷))) |
| 131 | 105, 8, 126, 130 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀 ∧ 𝑀 ∥ (𝐵 − 𝐷)) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐵 − 𝐷))) |
| 132 | 109, 129,
131 | mp2and 715 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐵 − 𝐷)) |
| 133 | | dvdssub2 15023 |
. . . . . . . . . . . 12
⊢
(((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐵 − 𝐷)) → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷)) |
| 134 | 105, 17, 20, 132, 133 | syl31anc 1329 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷)) |
| 135 | 124, 134 | mpbird 247 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵) |
| 136 | | ax-1ne0 10005 |
. . . . . . . . . . . . . . 15
⊢ 1 ≠
0 |
| 137 | 136 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ≠ 0) |
| 138 | 49, 137 | eqnetrd 2861 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 gcd 𝐵) ≠ 0) |
| 139 | 138 | neneqd 2799 |
. . . . . . . . . . . 12
⊢ (𝜑 → ¬ (𝐴 gcd 𝐵) = 0) |
| 140 | | gcdeq0 15238 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) |
| 141 | 11, 17, 140 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) |
| 142 | 139, 141 | mtbid 314 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
| 143 | | dvdslegcd 15226 |
. . . . . . . . . . 11
⊢
(((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴 ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵) → ((𝐶 gcd 𝐷) gcd 𝑀) ≤ (𝐴 gcd 𝐵))) |
| 144 | 105, 11, 17, 142, 143 | syl31anc 1329 |
. . . . . . . . . 10
⊢ (𝜑 → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴 ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵) → ((𝐶 gcd 𝐷) gcd 𝑀) ≤ (𝐴 gcd 𝐵))) |
| 145 | 121, 135,
144 | mp2and 715 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ≤ (𝐴 gcd 𝐵)) |
| 146 | 145, 49 | breqtrd 4679 |
. . . . . . . 8
⊢ (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ≤ 1) |
| 147 | | simpr 477 |
. . . . . . . . . . . 12
⊢ (((𝐶 gcd 𝐷) = 0 ∧ 𝑀 = 0) → 𝑀 = 0) |
| 148 | 147 | necon3ai 2819 |
. . . . . . . . . . 11
⊢ (𝑀 ≠ 0 → ¬ ((𝐶 gcd 𝐷) = 0 ∧ 𝑀 = 0)) |
| 149 | 111, 148 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ ((𝐶 gcd 𝐷) = 0 ∧ 𝑀 = 0)) |
| 150 | | gcdn0cl 15224 |
. . . . . . . . . 10
⊢ ((((𝐶 gcd 𝐷) ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ¬ ((𝐶 gcd 𝐷) = 0 ∧ 𝑀 = 0)) → ((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℕ) |
| 151 | 51, 8, 149, 150 | syl21anc 1325 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℕ) |
| 152 | | nnle1eq1 11048 |
. . . . . . . . 9
⊢ (((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℕ → (((𝐶 gcd 𝐷) gcd 𝑀) ≤ 1 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) = 1)) |
| 153 | 151, 152 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) ≤ 1 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) = 1)) |
| 154 | 146, 153 | mpbid 222 |
. . . . . . 7
⊢ (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) = 1) |
| 155 | | 2nn 11185 |
. . . . . . . . 9
⊢ 2 ∈
ℕ |
| 156 | 155 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 2 ∈
ℕ) |
| 157 | | rplpwr 15276 |
. . . . . . . 8
⊢ (((𝐶 gcd 𝐷) ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 2 ∈ ℕ)
→ (((𝐶 gcd 𝐷) gcd 𝑀) = 1 → (((𝐶 gcd 𝐷)↑2) gcd 𝑀) = 1)) |
| 158 | 50, 5, 156, 157 | syl3anc 1326 |
. . . . . . 7
⊢ (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) = 1 → (((𝐶 gcd 𝐷)↑2) gcd 𝑀) = 1)) |
| 159 | 154, 158 | mpd 15 |
. . . . . 6
⊢ (𝜑 → (((𝐶 gcd 𝐷)↑2) gcd 𝑀) = 1) |
| 160 | 100, 159 | eqtrd 2656 |
. . . . 5
⊢ (𝜑 → (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = 1) |
| 161 | 65, 74 | nn0addcld 11355 |
. . . . . . 7
⊢ (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈
ℕ0) |
| 162 | 161 | nn0zd 11480 |
. . . . . 6
⊢ (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℤ) |
| 163 | | coprmdvds 15366 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ ((𝐶 gcd 𝐷)↑2) ∈ ℤ ∧ ((𝐸↑2) + (𝐹↑2)) ∈ ℤ) → ((𝑀 ∥ (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))) ∧ (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = 1) → 𝑀 ∥ ((𝐸↑2) + (𝐹↑2)))) |
| 164 | 8, 98, 162, 163 | syl3anc 1326 |
. . . . 5
⊢ (𝜑 → ((𝑀 ∥ (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))) ∧ (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = 1) → 𝑀 ∥ ((𝐸↑2) + (𝐹↑2)))) |
| 165 | 96, 160, 164 | mp2and 715 |
. . . 4
⊢ (𝜑 → 𝑀 ∥ ((𝐸↑2) + (𝐹↑2))) |
| 166 | | dvdsval2 14986 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ ((𝐸↑2) + (𝐹↑2)) ∈ ℤ) → (𝑀 ∥ ((𝐸↑2) + (𝐹↑2)) ↔ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ)) |
| 167 | 8, 111, 162, 166 | syl3anc 1326 |
. . . 4
⊢ (𝜑 → (𝑀 ∥ ((𝐸↑2) + (𝐹↑2)) ↔ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ)) |
| 168 | 165, 167 | mpbid 222 |
. . 3
⊢ (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ) |
| 169 | 65 | nn0red 11352 |
. . . . 5
⊢ (𝜑 → (𝐸↑2) ∈ ℝ) |
| 170 | 74 | nn0red 11352 |
. . . . 5
⊢ (𝜑 → (𝐹↑2) ∈ ℝ) |
| 171 | 169, 170 | readdcld 10069 |
. . . 4
⊢ (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℝ) |
| 172 | 5 | nnred 11035 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 173 | 1, 47 | 2sqlem7 25149 |
. . . . . . 7
⊢ 𝑌 ⊆ (𝑆 ∩ ℕ) |
| 174 | | inss2 3834 |
. . . . . . 7
⊢ (𝑆 ∩ ℕ) ⊆
ℕ |
| 175 | 173, 174 | sstri 3612 |
. . . . . 6
⊢ 𝑌 ⊆
ℕ |
| 176 | 63, 72 | gcdcld 15230 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸 gcd 𝐹) ∈
ℕ0) |
| 177 | 176 | nn0cnd 11353 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸 gcd 𝐹) ∈ ℂ) |
| 178 | | 1cnd 10056 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℂ) |
| 179 | 77 | mulid1d 10057 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐶 gcd 𝐷) · 1) = (𝐶 gcd 𝐷)) |
| 180 | 83, 91 | oveq12d 6668 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝐶 gcd 𝐷) · 𝐸) gcd ((𝐶 gcd 𝐷) · 𝐹)) = (𝐶 gcd 𝐷)) |
| 181 | 14, 20 | gcdcld 15230 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶 gcd 𝐷) ∈
ℕ0) |
| 182 | | mulgcd 15265 |
. . . . . . . . . . 11
⊢ (((𝐶 gcd 𝐷) ∈ ℕ0 ∧ 𝐸 ∈ ℤ ∧ 𝐹 ∈ ℤ) → (((𝐶 gcd 𝐷) · 𝐸) gcd ((𝐶 gcd 𝐷) · 𝐹)) = ((𝐶 gcd 𝐷) · (𝐸 gcd 𝐹))) |
| 183 | 181, 63, 72, 182 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝐶 gcd 𝐷) · 𝐸) gcd ((𝐶 gcd 𝐷) · 𝐹)) = ((𝐶 gcd 𝐷) · (𝐸 gcd 𝐹))) |
| 184 | 179, 180,
183 | 3eqtr2rd 2663 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐶 gcd 𝐷) · (𝐸 gcd 𝐹)) = ((𝐶 gcd 𝐷) · 1)) |
| 185 | 177, 178,
77, 59, 184 | mulcanad 10662 |
. . . . . . . 8
⊢ (𝜑 → (𝐸 gcd 𝐹) = 1) |
| 186 | | eqidd 2623 |
. . . . . . . 8
⊢ (𝜑 → ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝐹↑2))) |
| 187 | | oveq1 6657 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐸 → (𝑥 gcd 𝑦) = (𝐸 gcd 𝑦)) |
| 188 | 187 | eqeq1d 2624 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐸 → ((𝑥 gcd 𝑦) = 1 ↔ (𝐸 gcd 𝑦) = 1)) |
| 189 | | oveq1 6657 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐸 → (𝑥↑2) = (𝐸↑2)) |
| 190 | 189 | oveq1d 6665 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐸 → ((𝑥↑2) + (𝑦↑2)) = ((𝐸↑2) + (𝑦↑2))) |
| 191 | 190 | eqeq2d 2632 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐸 → (((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝑦↑2)))) |
| 192 | 188, 191 | anbi12d 747 |
. . . . . . . . 9
⊢ (𝑥 = 𝐸 → (((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ ((𝐸 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝑦↑2))))) |
| 193 | | oveq2 6658 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐹 → (𝐸 gcd 𝑦) = (𝐸 gcd 𝐹)) |
| 194 | 193 | eqeq1d 2624 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐹 → ((𝐸 gcd 𝑦) = 1 ↔ (𝐸 gcd 𝐹) = 1)) |
| 195 | | oveq1 6657 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐹 → (𝑦↑2) = (𝐹↑2)) |
| 196 | 195 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐹 → ((𝐸↑2) + (𝑦↑2)) = ((𝐸↑2) + (𝐹↑2))) |
| 197 | 196 | eqeq2d 2632 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐹 → (((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝑦↑2)) ↔ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝐹↑2)))) |
| 198 | 194, 197 | anbi12d 747 |
. . . . . . . . 9
⊢ (𝑦 = 𝐹 → (((𝐸 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝑦↑2))) ↔ ((𝐸 gcd 𝐹) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝐹↑2))))) |
| 199 | 192, 198 | rspc2ev 3324 |
. . . . . . . 8
⊢ ((𝐸 ∈ ℤ ∧ 𝐹 ∈ ℤ ∧ ((𝐸 gcd 𝐹) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝐹↑2)))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2)))) |
| 200 | 63, 72, 185, 186, 199 | syl112anc 1330 |
. . . . . . 7
⊢ (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2)))) |
| 201 | | ovex 6678 |
. . . . . . . 8
⊢ ((𝐸↑2) + (𝐹↑2)) ∈ V |
| 202 | | eqeq1 2626 |
. . . . . . . . . 10
⊢ (𝑧 = ((𝐸↑2) + (𝐹↑2)) → (𝑧 = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2)))) |
| 203 | 202 | anbi2d 740 |
. . . . . . . . 9
⊢ (𝑧 = ((𝐸↑2) + (𝐹↑2)) → (((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
| 204 | 203 | 2rexbidv 3057 |
. . . . . . . 8
⊢ (𝑧 = ((𝐸↑2) + (𝐹↑2)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
| 205 | 201, 204,
47 | elab2 3354 |
. . . . . . 7
⊢ (((𝐸↑2) + (𝐹↑2)) ∈ 𝑌 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2)))) |
| 206 | 200, 205 | sylibr 224 |
. . . . . 6
⊢ (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ 𝑌) |
| 207 | 175, 206 | sseldi 3601 |
. . . . 5
⊢ (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℕ) |
| 208 | 207 | nngt0d 11064 |
. . . 4
⊢ (𝜑 → 0 < ((𝐸↑2) + (𝐹↑2))) |
| 209 | 5 | nngt0d 11064 |
. . . 4
⊢ (𝜑 → 0 < 𝑀) |
| 210 | 171, 172,
208, 209 | divgt0d 10959 |
. . 3
⊢ (𝜑 → 0 < (((𝐸↑2) + (𝐹↑2)) / 𝑀)) |
| 211 | | elnnz 11387 |
. . 3
⊢ ((((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℕ ↔ ((((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ ∧ 0 < (((𝐸↑2) + (𝐹↑2)) / 𝑀))) |
| 212 | 168, 210,
211 | sylanbrc 698 |
. 2
⊢ (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℕ) |
| 213 | | prmnn 15388 |
. . . . . . . 8
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℕ) |
| 214 | 213 | ad2antrl 764 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ ℕ) |
| 215 | 214 | nnred 11035 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ ℝ) |
| 216 | 168 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ) |
| 217 | 216 | zred 11482 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℝ) |
| 218 | | peano2zm 11420 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈
ℤ) |
| 219 | 8, 218 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 − 1) ∈ ℤ) |
| 220 | 219 | zred 11482 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 − 1) ∈ ℝ) |
| 221 | 220 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑀 − 1) ∈ ℝ) |
| 222 | | simprr 796 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀)) |
| 223 | | prmz 15389 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℤ) |
| 224 | 223 | ad2antrl 764 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ ℤ) |
| 225 | 212 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℕ) |
| 226 | | dvdsle 15032 |
. . . . . . . . . 10
⊢ ((𝑝 ∈ ℤ ∧ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℕ) → (𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) → 𝑝 ≤ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) |
| 227 | 224, 225,
226 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) → 𝑝 ≤ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) |
| 228 | 222, 227 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ≤ (((𝐸↑2) + (𝐹↑2)) / 𝑀)) |
| 229 | | zsqcl 12934 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℤ → (𝑀↑2) ∈
ℤ) |
| 230 | 8, 229 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑀↑2) ∈ ℤ) |
| 231 | 230 | zred 11482 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑀↑2) ∈ ℝ) |
| 232 | 231 | rehalfcld 11279 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑀↑2) / 2) ∈
ℝ) |
| 233 | 16 | zred 11482 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐶↑2) ∈ ℝ) |
| 234 | 22 | zred 11482 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐷↑2) ∈ ℝ) |
| 235 | 233, 234 | readdcld 10069 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℝ) |
| 236 | | 1red 10055 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 1 ∈
ℝ) |
| 237 | 50 | nnsqcld 13029 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℕ) |
| 238 | 237 | nnred 11035 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℝ) |
| 239 | 161 | nn0ge0d 11354 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 ≤ ((𝐸↑2) + (𝐹↑2))) |
| 240 | 237 | nnge1d 11063 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 1 ≤ ((𝐶 gcd 𝐷)↑2)) |
| 241 | 236, 238,
171, 239, 240 | lemul1ad 10963 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (1 · ((𝐸↑2) + (𝐹↑2))) ≤ (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2)))) |
| 242 | 161 | nn0cnd 11353 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℂ) |
| 243 | 242 | mulid2d 10058 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (1 · ((𝐸↑2) + (𝐹↑2))) = ((𝐸↑2) + (𝐹↑2))) |
| 244 | 241, 243,
95 | 3brtr3d 4684 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((𝐶↑2) + (𝐷↑2))) |
| 245 | 232 | rehalfcld 11279 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (((𝑀↑2) / 2) / 2) ∈
ℝ) |
| 246 | 11, 5, 12 | 4sqlem7 15648 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐶↑2) ≤ (((𝑀↑2) / 2) / 2)) |
| 247 | 17, 5, 18 | 4sqlem7 15648 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐷↑2) ≤ (((𝑀↑2) / 2) / 2)) |
| 248 | 233, 234,
245, 245, 246, 247 | le2addd 10646 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐶↑2) + (𝐷↑2)) ≤ ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2))) |
| 249 | 232 | recnd 10068 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑀↑2) / 2) ∈
ℂ) |
| 250 | 249 | 2halvesd 11278 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) = ((𝑀↑2) / 2)) |
| 251 | 248, 250 | breqtrd 4679 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐶↑2) + (𝐷↑2)) ≤ ((𝑀↑2) / 2)) |
| 252 | 171, 235,
232, 244, 251 | letrd 10194 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((𝑀↑2) / 2)) |
| 253 | 5 | nnsqcld 13029 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑀↑2) ∈ ℕ) |
| 254 | 253 | nnrpd 11870 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑀↑2) ∈
ℝ+) |
| 255 | | rphalflt 11860 |
. . . . . . . . . . . . . 14
⊢ ((𝑀↑2) ∈
ℝ+ → ((𝑀↑2) / 2) < (𝑀↑2)) |
| 256 | 254, 255 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑀↑2) / 2) < (𝑀↑2)) |
| 257 | 171, 232,
231, 252, 256 | lelttrd 10195 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐸↑2) + (𝐹↑2)) < (𝑀↑2)) |
| 258 | 8 | zcnd 11483 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 259 | 258 | sqvald 13005 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑀↑2) = (𝑀 · 𝑀)) |
| 260 | 257, 259 | breqtrd 4679 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐸↑2) + (𝐹↑2)) < (𝑀 · 𝑀)) |
| 261 | | ltdivmul 10898 |
. . . . . . . . . . . 12
⊢ ((((𝐸↑2) + (𝐹↑2)) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑀 ∈ ℝ ∧ 0 <
𝑀)) → ((((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀 ↔ ((𝐸↑2) + (𝐹↑2)) < (𝑀 · 𝑀))) |
| 262 | 171, 172,
172, 209, 261 | syl112anc 1330 |
. . . . . . . . . . 11
⊢ (𝜑 → ((((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀 ↔ ((𝐸↑2) + (𝐹↑2)) < (𝑀 · 𝑀))) |
| 263 | 260, 262 | mpbird 247 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀) |
| 264 | | zltlem1 11430 |
. . . . . . . . . . 11
⊢
(((((𝐸↑2) +
(𝐹↑2)) / 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ) →
((((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀 ↔ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ≤ (𝑀 − 1))) |
| 265 | 168, 8, 264 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 → ((((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀 ↔ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ≤ (𝑀 − 1))) |
| 266 | 263, 265 | mpbid 222 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ≤ (𝑀 − 1)) |
| 267 | 266 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ≤ (𝑀 − 1)) |
| 268 | 215, 217,
221, 228, 267 | letrd 10194 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ≤ (𝑀 − 1)) |
| 269 | 219 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑀 − 1) ∈ ℤ) |
| 270 | | fznn 12408 |
. . . . . . . 8
⊢ ((𝑀 − 1) ∈ ℤ
→ (𝑝 ∈
(1...(𝑀 − 1)) ↔
(𝑝 ∈ ℕ ∧
𝑝 ≤ (𝑀 − 1)))) |
| 271 | 269, 270 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑝 ∈ (1...(𝑀 − 1)) ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ (𝑀 − 1)))) |
| 272 | 214, 268,
271 | mpbir2and 957 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ (1...(𝑀 − 1))) |
| 273 | 206 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → ((𝐸↑2) + (𝐹↑2)) ∈ 𝑌) |
| 274 | 272, 273 | jca 554 |
. . . . 5
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑝 ∈ (1...(𝑀 − 1)) ∧ ((𝐸↑2) + (𝐹↑2)) ∈ 𝑌)) |
| 275 | 48 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) |
| 276 | | dvdsmul2 15004 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ (𝑀 · (((𝐸↑2) + (𝐹↑2)) / 𝑀))) |
| 277 | 8, 168, 276 | syl2anc 693 |
. . . . . . . 8
⊢ (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ (𝑀 · (((𝐸↑2) + (𝐹↑2)) / 𝑀))) |
| 278 | 242, 258,
111 | divcan2d 10803 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 · (((𝐸↑2) + (𝐹↑2)) / 𝑀)) = ((𝐸↑2) + (𝐹↑2))) |
| 279 | 277, 278 | breqtrd 4679 |
. . . . . . 7
⊢ (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ ((𝐸↑2) + (𝐹↑2))) |
| 280 | 279 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ ((𝐸↑2) + (𝐹↑2))) |
| 281 | 162 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → ((𝐸↑2) + (𝐹↑2)) ∈ ℤ) |
| 282 | | dvdstr 15018 |
. . . . . . 7
⊢ ((𝑝 ∈ ℤ ∧ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ ∧ ((𝐸↑2) + (𝐹↑2)) ∈ ℤ) → ((𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∧ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ ((𝐸↑2) + (𝐹↑2))) → 𝑝 ∥ ((𝐸↑2) + (𝐹↑2)))) |
| 283 | 224, 216,
281, 282 | syl3anc 1326 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → ((𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∧ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ ((𝐸↑2) + (𝐹↑2))) → 𝑝 ∥ ((𝐸↑2) + (𝐹↑2)))) |
| 284 | 222, 280,
283 | mp2and 715 |
. . . . 5
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∥ ((𝐸↑2) + (𝐹↑2))) |
| 285 | | breq1 4656 |
. . . . . . 7
⊢ (𝑏 = 𝑝 → (𝑏 ∥ 𝑎 ↔ 𝑝 ∥ 𝑎)) |
| 286 | | eleq1 2689 |
. . . . . . 7
⊢ (𝑏 = 𝑝 → (𝑏 ∈ 𝑆 ↔ 𝑝 ∈ 𝑆)) |
| 287 | 285, 286 | imbi12d 334 |
. . . . . 6
⊢ (𝑏 = 𝑝 → ((𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) ↔ (𝑝 ∥ 𝑎 → 𝑝 ∈ 𝑆))) |
| 288 | | breq2 4657 |
. . . . . . 7
⊢ (𝑎 = ((𝐸↑2) + (𝐹↑2)) → (𝑝 ∥ 𝑎 ↔ 𝑝 ∥ ((𝐸↑2) + (𝐹↑2)))) |
| 289 | 288 | imbi1d 331 |
. . . . . 6
⊢ (𝑎 = ((𝐸↑2) + (𝐹↑2)) → ((𝑝 ∥ 𝑎 → 𝑝 ∈ 𝑆) ↔ (𝑝 ∥ ((𝐸↑2) + (𝐹↑2)) → 𝑝 ∈ 𝑆))) |
| 290 | 287, 289 | rspc2v 3322 |
. . . . 5
⊢ ((𝑝 ∈ (1...(𝑀 − 1)) ∧ ((𝐸↑2) + (𝐹↑2)) ∈ 𝑌) → (∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆) → (𝑝 ∥ ((𝐸↑2) + (𝐹↑2)) → 𝑝 ∈ 𝑆))) |
| 291 | 274, 275,
284, 290 | syl3c 66 |
. . . 4
⊢ ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ 𝑆) |
| 292 | 291 | expr 643 |
. . 3
⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) → 𝑝 ∈ 𝑆)) |
| 293 | 292 | ralrimiva 2966 |
. 2
⊢ (𝜑 → ∀𝑝 ∈ ℙ (𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) → 𝑝 ∈ 𝑆)) |
| 294 | | inss1 3833 |
. . . . 5
⊢ (𝑆 ∩ ℕ) ⊆ 𝑆 |
| 295 | 173, 294 | sstri 3612 |
. . . 4
⊢ 𝑌 ⊆ 𝑆 |
| 296 | 295, 206 | sseldi 3601 |
. . 3
⊢ (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ 𝑆) |
| 297 | 278, 296 | eqeltrd 2701 |
. 2
⊢ (𝜑 → (𝑀 · (((𝐸↑2) + (𝐹↑2)) / 𝑀)) ∈ 𝑆) |
| 298 | 1, 5, 212, 293, 297 | 2sqlem6 25148 |
1
⊢ (𝜑 → 𝑀 ∈ 𝑆) |