MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem8 Structured version   Visualization version   GIF version

Theorem 2sqlem8 25151
Description: Lemma for 2sq 25155. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem7.2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
2sqlem9.5 (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
2sqlem9.7 (𝜑𝑀𝑁)
2sqlem8.n (𝜑𝑁 ∈ ℕ)
2sqlem8.m (𝜑𝑀 ∈ (ℤ‘2))
2sqlem8.1 (𝜑𝐴 ∈ ℤ)
2sqlem8.2 (𝜑𝐵 ∈ ℤ)
2sqlem8.3 (𝜑 → (𝐴 gcd 𝐵) = 1)
2sqlem8.4 (𝜑𝑁 = ((𝐴↑2) + (𝐵↑2)))
2sqlem8.c 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
2sqlem8.d 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
2sqlem8.e 𝐸 = (𝐶 / (𝐶 gcd 𝐷))
2sqlem8.f 𝐹 = (𝐷 / (𝐶 gcd 𝐷))
Assertion
Ref Expression
2sqlem8 (𝜑𝑀𝑆)
Distinct variable groups:   𝑎,𝑏,𝑤,𝑥,𝑦,𝑧   𝐴,𝑎,𝑥,𝑦,𝑧   𝑥,𝐶   𝜑,𝑥,𝑦   𝐵,𝑎,𝑏,𝑥,𝑦   𝑀,𝑎,𝑏,𝑥,𝑦,𝑧   𝑆,𝑎,𝑏,𝑥,𝑦,𝑧   𝑥,𝐷   𝐸,𝑎,𝑥,𝑦,𝑧   𝑥,𝑁,𝑦,𝑧   𝑌,𝑎,𝑏,𝑥,𝑦   𝐹,𝑎,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑎,𝑏)   𝐴(𝑤,𝑏)   𝐵(𝑧,𝑤)   𝐶(𝑦,𝑧,𝑤,𝑎,𝑏)   𝐷(𝑦,𝑧,𝑤,𝑎,𝑏)   𝑆(𝑤)   𝐸(𝑤,𝑏)   𝐹(𝑤,𝑏)   𝑀(𝑤)   𝑁(𝑤,𝑎,𝑏)   𝑌(𝑧,𝑤)

Proof of Theorem 2sqlem8
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 2sq.1 . 2 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2 2sqlem8.m . . . 4 (𝜑𝑀 ∈ (ℤ‘2))
3 eluz2b3 11762 . . . 4 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
42, 3sylib 208 . . 3 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
54simpld 475 . 2 (𝜑𝑀 ∈ ℕ)
6 2sqlem9.7 . . . . . . 7 (𝜑𝑀𝑁)
7 eluzelz 11697 . . . . . . . . 9 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℤ)
82, 7syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
9 2sqlem8.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
109nnzd 11481 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
11 2sqlem8.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
12 2sqlem8.c . . . . . . . . . . . 12 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
1311, 5, 124sqlem5 15646 . . . . . . . . . . 11 (𝜑 → (𝐶 ∈ ℤ ∧ ((𝐴𝐶) / 𝑀) ∈ ℤ))
1413simpld 475 . . . . . . . . . 10 (𝜑𝐶 ∈ ℤ)
15 zsqcl 12934 . . . . . . . . . 10 (𝐶 ∈ ℤ → (𝐶↑2) ∈ ℤ)
1614, 15syl 17 . . . . . . . . 9 (𝜑 → (𝐶↑2) ∈ ℤ)
17 2sqlem8.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℤ)
18 2sqlem8.d . . . . . . . . . . . 12 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
1917, 5, 184sqlem5 15646 . . . . . . . . . . 11 (𝜑 → (𝐷 ∈ ℤ ∧ ((𝐵𝐷) / 𝑀) ∈ ℤ))
2019simpld 475 . . . . . . . . . 10 (𝜑𝐷 ∈ ℤ)
21 zsqcl 12934 . . . . . . . . . 10 (𝐷 ∈ ℤ → (𝐷↑2) ∈ ℤ)
2220, 21syl 17 . . . . . . . . 9 (𝜑 → (𝐷↑2) ∈ ℤ)
2316, 22zaddcld 11486 . . . . . . . 8 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℤ)
2411, 5, 124sqlem8 15649 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐴↑2) − (𝐶↑2)))
2517, 5, 184sqlem8 15649 . . . . . . . . . 10 (𝜑𝑀 ∥ ((𝐵↑2) − (𝐷↑2)))
26 zsqcl 12934 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
2711, 26syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴↑2) ∈ ℤ)
2827, 16zsubcld 11487 . . . . . . . . . . 11 (𝜑 → ((𝐴↑2) − (𝐶↑2)) ∈ ℤ)
29 zsqcl 12934 . . . . . . . . . . . . 13 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
3017, 29syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐵↑2) ∈ ℤ)
3130, 22zsubcld 11487 . . . . . . . . . . 11 (𝜑 → ((𝐵↑2) − (𝐷↑2)) ∈ ℤ)
32 dvds2add 15015 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ ((𝐴↑2) − (𝐶↑2)) ∈ ℤ ∧ ((𝐵↑2) − (𝐷↑2)) ∈ ℤ) → ((𝑀 ∥ ((𝐴↑2) − (𝐶↑2)) ∧ 𝑀 ∥ ((𝐵↑2) − (𝐷↑2))) → 𝑀 ∥ (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2)))))
338, 28, 31, 32syl3anc 1326 . . . . . . . . . 10 (𝜑 → ((𝑀 ∥ ((𝐴↑2) − (𝐶↑2)) ∧ 𝑀 ∥ ((𝐵↑2) − (𝐷↑2))) → 𝑀 ∥ (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2)))))
3424, 25, 33mp2and 715 . . . . . . . . 9 (𝜑𝑀 ∥ (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2))))
35 2sqlem8.4 . . . . . . . . . . 11 (𝜑𝑁 = ((𝐴↑2) + (𝐵↑2)))
3635oveq1d 6665 . . . . . . . . . 10 (𝜑 → (𝑁 − ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) + (𝐵↑2)) − ((𝐶↑2) + (𝐷↑2))))
3727zcnd 11483 . . . . . . . . . . 11 (𝜑 → (𝐴↑2) ∈ ℂ)
3830zcnd 11483 . . . . . . . . . . 11 (𝜑 → (𝐵↑2) ∈ ℂ)
3916zcnd 11483 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) ∈ ℂ)
4022zcnd 11483 . . . . . . . . . . 11 (𝜑 → (𝐷↑2) ∈ ℂ)
4137, 38, 39, 40addsub4d 10439 . . . . . . . . . 10 (𝜑 → (((𝐴↑2) + (𝐵↑2)) − ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2))))
4236, 41eqtrd 2656 . . . . . . . . 9 (𝜑 → (𝑁 − ((𝐶↑2) + (𝐷↑2))) = (((𝐴↑2) − (𝐶↑2)) + ((𝐵↑2) − (𝐷↑2))))
4334, 42breqtrrd 4681 . . . . . . . 8 (𝜑𝑀 ∥ (𝑁 − ((𝐶↑2) + (𝐷↑2))))
44 dvdssub2 15023 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝐶↑2) + (𝐷↑2)) ∈ ℤ) ∧ 𝑀 ∥ (𝑁 − ((𝐶↑2) + (𝐷↑2)))) → (𝑀𝑁𝑀 ∥ ((𝐶↑2) + (𝐷↑2))))
458, 10, 23, 43, 44syl31anc 1329 . . . . . . 7 (𝜑 → (𝑀𝑁𝑀 ∥ ((𝐶↑2) + (𝐷↑2))))
466, 45mpbid 222 . . . . . 6 (𝜑𝑀 ∥ ((𝐶↑2) + (𝐷↑2)))
47 2sqlem7.2 . . . . . . . . . . . 12 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
48 2sqlem9.5 . . . . . . . . . . . 12 (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
49 2sqlem8.3 . . . . . . . . . . . 12 (𝜑 → (𝐴 gcd 𝐵) = 1)
501, 47, 48, 6, 9, 2, 11, 17, 49, 35, 12, 182sqlem8a 25150 . . . . . . . . . . 11 (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ)
5150nnzd 11481 . . . . . . . . . 10 (𝜑 → (𝐶 gcd 𝐷) ∈ ℤ)
52 zsqcl2 12941 . . . . . . . . . 10 ((𝐶 gcd 𝐷) ∈ ℤ → ((𝐶 gcd 𝐷)↑2) ∈ ℕ0)
5351, 52syl 17 . . . . . . . . 9 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℕ0)
5453nn0cnd 11353 . . . . . . . 8 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℂ)
55 2sqlem8.e . . . . . . . . . . 11 𝐸 = (𝐶 / (𝐶 gcd 𝐷))
56 gcddvds 15225 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝐶 gcd 𝐷) ∥ 𝐶 ∧ (𝐶 gcd 𝐷) ∥ 𝐷))
5714, 20, 56syl2anc 693 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 gcd 𝐷) ∥ 𝐶 ∧ (𝐶 gcd 𝐷) ∥ 𝐷))
5857simpld 475 . . . . . . . . . . . 12 (𝜑 → (𝐶 gcd 𝐷) ∥ 𝐶)
5950nnne0d 11065 . . . . . . . . . . . . 13 (𝜑 → (𝐶 gcd 𝐷) ≠ 0)
60 dvdsval2 14986 . . . . . . . . . . . . 13 (((𝐶 gcd 𝐷) ∈ ℤ ∧ (𝐶 gcd 𝐷) ≠ 0 ∧ 𝐶 ∈ ℤ) → ((𝐶 gcd 𝐷) ∥ 𝐶 ↔ (𝐶 / (𝐶 gcd 𝐷)) ∈ ℤ))
6151, 59, 14, 60syl3anc 1326 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) ∥ 𝐶 ↔ (𝐶 / (𝐶 gcd 𝐷)) ∈ ℤ))
6258, 61mpbid 222 . . . . . . . . . . 11 (𝜑 → (𝐶 / (𝐶 gcd 𝐷)) ∈ ℤ)
6355, 62syl5eqel 2705 . . . . . . . . . 10 (𝜑𝐸 ∈ ℤ)
64 zsqcl2 12941 . . . . . . . . . 10 (𝐸 ∈ ℤ → (𝐸↑2) ∈ ℕ0)
6563, 64syl 17 . . . . . . . . 9 (𝜑 → (𝐸↑2) ∈ ℕ0)
6665nn0cnd 11353 . . . . . . . 8 (𝜑 → (𝐸↑2) ∈ ℂ)
67 2sqlem8.f . . . . . . . . . . 11 𝐹 = (𝐷 / (𝐶 gcd 𝐷))
6857simprd 479 . . . . . . . . . . . 12 (𝜑 → (𝐶 gcd 𝐷) ∥ 𝐷)
69 dvdsval2 14986 . . . . . . . . . . . . 13 (((𝐶 gcd 𝐷) ∈ ℤ ∧ (𝐶 gcd 𝐷) ≠ 0 ∧ 𝐷 ∈ ℤ) → ((𝐶 gcd 𝐷) ∥ 𝐷 ↔ (𝐷 / (𝐶 gcd 𝐷)) ∈ ℤ))
7051, 59, 20, 69syl3anc 1326 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) ∥ 𝐷 ↔ (𝐷 / (𝐶 gcd 𝐷)) ∈ ℤ))
7168, 70mpbid 222 . . . . . . . . . . 11 (𝜑 → (𝐷 / (𝐶 gcd 𝐷)) ∈ ℤ)
7267, 71syl5eqel 2705 . . . . . . . . . 10 (𝜑𝐹 ∈ ℤ)
73 zsqcl2 12941 . . . . . . . . . 10 (𝐹 ∈ ℤ → (𝐹↑2) ∈ ℕ0)
7472, 73syl 17 . . . . . . . . 9 (𝜑 → (𝐹↑2) ∈ ℕ0)
7574nn0cnd 11353 . . . . . . . 8 (𝜑 → (𝐹↑2) ∈ ℂ)
7654, 66, 75adddid 10064 . . . . . . 7 (𝜑 → (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))) = ((((𝐶 gcd 𝐷)↑2) · (𝐸↑2)) + (((𝐶 gcd 𝐷)↑2) · (𝐹↑2))))
7751zcnd 11483 . . . . . . . . . 10 (𝜑 → (𝐶 gcd 𝐷) ∈ ℂ)
7863zcnd 11483 . . . . . . . . . 10 (𝜑𝐸 ∈ ℂ)
7977, 78sqmuld 13020 . . . . . . . . 9 (𝜑 → (((𝐶 gcd 𝐷) · 𝐸)↑2) = (((𝐶 gcd 𝐷)↑2) · (𝐸↑2)))
8055oveq2i 6661 . . . . . . . . . . 11 ((𝐶 gcd 𝐷) · 𝐸) = ((𝐶 gcd 𝐷) · (𝐶 / (𝐶 gcd 𝐷)))
8114zcnd 11483 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
8281, 77, 59divcan2d 10803 . . . . . . . . . . 11 (𝜑 → ((𝐶 gcd 𝐷) · (𝐶 / (𝐶 gcd 𝐷))) = 𝐶)
8380, 82syl5eq 2668 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) · 𝐸) = 𝐶)
8483oveq1d 6665 . . . . . . . . 9 (𝜑 → (((𝐶 gcd 𝐷) · 𝐸)↑2) = (𝐶↑2))
8579, 84eqtr3d 2658 . . . . . . . 8 (𝜑 → (((𝐶 gcd 𝐷)↑2) · (𝐸↑2)) = (𝐶↑2))
8672zcnd 11483 . . . . . . . . . 10 (𝜑𝐹 ∈ ℂ)
8777, 86sqmuld 13020 . . . . . . . . 9 (𝜑 → (((𝐶 gcd 𝐷) · 𝐹)↑2) = (((𝐶 gcd 𝐷)↑2) · (𝐹↑2)))
8867oveq2i 6661 . . . . . . . . . . 11 ((𝐶 gcd 𝐷) · 𝐹) = ((𝐶 gcd 𝐷) · (𝐷 / (𝐶 gcd 𝐷)))
8920zcnd 11483 . . . . . . . . . . . 12 (𝜑𝐷 ∈ ℂ)
9089, 77, 59divcan2d 10803 . . . . . . . . . . 11 (𝜑 → ((𝐶 gcd 𝐷) · (𝐷 / (𝐶 gcd 𝐷))) = 𝐷)
9188, 90syl5eq 2668 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) · 𝐹) = 𝐷)
9291oveq1d 6665 . . . . . . . . 9 (𝜑 → (((𝐶 gcd 𝐷) · 𝐹)↑2) = (𝐷↑2))
9387, 92eqtr3d 2658 . . . . . . . 8 (𝜑 → (((𝐶 gcd 𝐷)↑2) · (𝐹↑2)) = (𝐷↑2))
9485, 93oveq12d 6668 . . . . . . 7 (𝜑 → ((((𝐶 gcd 𝐷)↑2) · (𝐸↑2)) + (((𝐶 gcd 𝐷)↑2) · (𝐹↑2))) = ((𝐶↑2) + (𝐷↑2)))
9576, 94eqtrd 2656 . . . . . 6 (𝜑 → (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))) = ((𝐶↑2) + (𝐷↑2)))
9646, 95breqtrrd 4681 . . . . 5 (𝜑𝑀 ∥ (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))))
97 zsqcl 12934 . . . . . . . 8 ((𝐶 gcd 𝐷) ∈ ℤ → ((𝐶 gcd 𝐷)↑2) ∈ ℤ)
9851, 97syl 17 . . . . . . 7 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℤ)
99 gcdcom 15235 . . . . . . 7 ((𝑀 ∈ ℤ ∧ ((𝐶 gcd 𝐷)↑2) ∈ ℤ) → (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = (((𝐶 gcd 𝐷)↑2) gcd 𝑀))
1008, 98, 99syl2anc 693 . . . . . 6 (𝜑 → (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = (((𝐶 gcd 𝐷)↑2) gcd 𝑀))
101 gcddvds 15225 . . . . . . . . . . . . . 14 (((𝐶 gcd 𝐷) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀))
10251, 8, 101syl2anc 693 . . . . . . . . . . . . 13 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀))
103102simpld 475 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷))
10451, 8gcdcld 15230 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℕ0)
105104nn0zd 11480 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ)
106 dvdstr 15018 . . . . . . . . . . . . 13 ((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ (𝐶 gcd 𝐷) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ (𝐶 gcd 𝐷) ∥ 𝐶) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶))
107105, 51, 14, 106syl3anc 1326 . . . . . . . . . . . 12 (𝜑 → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ (𝐶 gcd 𝐷) ∥ 𝐶) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶))
108103, 58, 107mp2and 715 . . . . . . . . . . 11 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶)
109102simprd 479 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀)
11013simprd 479 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝐶) / 𝑀) ∈ ℤ)
1115nnne0d 11065 . . . . . . . . . . . . . . 15 (𝜑𝑀 ≠ 0)
11211, 14zsubcld 11487 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐶) ∈ ℤ)
113 dvdsval2 14986 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (𝐴𝐶) ∈ ℤ) → (𝑀 ∥ (𝐴𝐶) ↔ ((𝐴𝐶) / 𝑀) ∈ ℤ))
1148, 111, 112, 113syl3anc 1326 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ∥ (𝐴𝐶) ↔ ((𝐴𝐶) / 𝑀) ∈ ℤ))
115110, 114mpbird 247 . . . . . . . . . . . . 13 (𝜑𝑀 ∥ (𝐴𝐶))
116 dvdstr 15018 . . . . . . . . . . . . . 14 ((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝐴𝐶) ∈ ℤ) → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀𝑀 ∥ (𝐴𝐶)) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐴𝐶)))
117105, 8, 112, 116syl3anc 1326 . . . . . . . . . . . . 13 (𝜑 → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀𝑀 ∥ (𝐴𝐶)) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐴𝐶)))
118109, 115, 117mp2and 715 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐴𝐶))
119 dvdssub2 15023 . . . . . . . . . . . 12 (((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐴𝐶)) → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶))
120105, 11, 14, 118, 119syl31anc 1329 . . . . . . . . . . 11 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐶))
121108, 120mpbird 247 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴)
122 dvdstr 15018 . . . . . . . . . . . . 13 ((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ (𝐶 gcd 𝐷) ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ (𝐶 gcd 𝐷) ∥ 𝐷) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷))
123105, 51, 20, 122syl3anc 1326 . . . . . . . . . . . 12 (𝜑 → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐶 gcd 𝐷) ∧ (𝐶 gcd 𝐷) ∥ 𝐷) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷))
124103, 68, 123mp2and 715 . . . . . . . . . . 11 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷)
12519simprd 479 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵𝐷) / 𝑀) ∈ ℤ)
12617, 20zsubcld 11487 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵𝐷) ∈ ℤ)
127 dvdsval2 14986 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (𝐵𝐷) ∈ ℤ) → (𝑀 ∥ (𝐵𝐷) ↔ ((𝐵𝐷) / 𝑀) ∈ ℤ))
1288, 111, 126, 127syl3anc 1326 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 ∥ (𝐵𝐷) ↔ ((𝐵𝐷) / 𝑀) ∈ ℤ))
129125, 128mpbird 247 . . . . . . . . . . . . 13 (𝜑𝑀 ∥ (𝐵𝐷))
130 dvdstr 15018 . . . . . . . . . . . . . 14 ((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝐵𝐷) ∈ ℤ) → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀𝑀 ∥ (𝐵𝐷)) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐵𝐷)))
131105, 8, 126, 130syl3anc 1326 . . . . . . . . . . . . 13 (𝜑 → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝑀𝑀 ∥ (𝐵𝐷)) → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐵𝐷)))
132109, 129, 131mp2and 715 . . . . . . . . . . . 12 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐵𝐷))
133 dvdssub2 15023 . . . . . . . . . . . 12 (((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ (𝐵𝐷)) → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷))
134105, 17, 20, 132, 133syl31anc 1329 . . . . . . . . . . 11 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐷))
135124, 134mpbird 247 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵)
136 ax-1ne0 10005 . . . . . . . . . . . . . . 15 1 ≠ 0
137136a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 1 ≠ 0)
13849, 137eqnetrd 2861 . . . . . . . . . . . . 13 (𝜑 → (𝐴 gcd 𝐵) ≠ 0)
139138neneqd 2799 . . . . . . . . . . . 12 (𝜑 → ¬ (𝐴 gcd 𝐵) = 0)
140 gcdeq0 15238 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
14111, 17, 140syl2anc 693 . . . . . . . . . . . 12 (𝜑 → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
142139, 141mtbid 314 . . . . . . . . . . 11 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
143 dvdslegcd 15226 . . . . . . . . . . 11 (((((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴 ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵) → ((𝐶 gcd 𝐷) gcd 𝑀) ≤ (𝐴 gcd 𝐵)))
144105, 11, 17, 142, 143syl31anc 1329 . . . . . . . . . 10 (𝜑 → ((((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐴 ∧ ((𝐶 gcd 𝐷) gcd 𝑀) ∥ 𝐵) → ((𝐶 gcd 𝐷) gcd 𝑀) ≤ (𝐴 gcd 𝐵)))
145121, 135, 144mp2and 715 . . . . . . . . 9 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ≤ (𝐴 gcd 𝐵))
146145, 49breqtrd 4679 . . . . . . . 8 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ≤ 1)
147 simpr 477 . . . . . . . . . . . 12 (((𝐶 gcd 𝐷) = 0 ∧ 𝑀 = 0) → 𝑀 = 0)
148147necon3ai 2819 . . . . . . . . . . 11 (𝑀 ≠ 0 → ¬ ((𝐶 gcd 𝐷) = 0 ∧ 𝑀 = 0))
149111, 148syl 17 . . . . . . . . . 10 (𝜑 → ¬ ((𝐶 gcd 𝐷) = 0 ∧ 𝑀 = 0))
150 gcdn0cl 15224 . . . . . . . . . 10 ((((𝐶 gcd 𝐷) ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ¬ ((𝐶 gcd 𝐷) = 0 ∧ 𝑀 = 0)) → ((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℕ)
15151, 8, 149, 150syl21anc 1325 . . . . . . . . 9 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℕ)
152 nnle1eq1 11048 . . . . . . . . 9 (((𝐶 gcd 𝐷) gcd 𝑀) ∈ ℕ → (((𝐶 gcd 𝐷) gcd 𝑀) ≤ 1 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) = 1))
153151, 152syl 17 . . . . . . . 8 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) ≤ 1 ↔ ((𝐶 gcd 𝐷) gcd 𝑀) = 1))
154146, 153mpbid 222 . . . . . . 7 (𝜑 → ((𝐶 gcd 𝐷) gcd 𝑀) = 1)
155 2nn 11185 . . . . . . . . 9 2 ∈ ℕ
156155a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℕ)
157 rplpwr 15276 . . . . . . . 8 (((𝐶 gcd 𝐷) ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 2 ∈ ℕ) → (((𝐶 gcd 𝐷) gcd 𝑀) = 1 → (((𝐶 gcd 𝐷)↑2) gcd 𝑀) = 1))
15850, 5, 156, 157syl3anc 1326 . . . . . . 7 (𝜑 → (((𝐶 gcd 𝐷) gcd 𝑀) = 1 → (((𝐶 gcd 𝐷)↑2) gcd 𝑀) = 1))
159154, 158mpd 15 . . . . . 6 (𝜑 → (((𝐶 gcd 𝐷)↑2) gcd 𝑀) = 1)
160100, 159eqtrd 2656 . . . . 5 (𝜑 → (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = 1)
16165, 74nn0addcld 11355 . . . . . . 7 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℕ0)
162161nn0zd 11480 . . . . . 6 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℤ)
163 coprmdvds 15366 . . . . . 6 ((𝑀 ∈ ℤ ∧ ((𝐶 gcd 𝐷)↑2) ∈ ℤ ∧ ((𝐸↑2) + (𝐹↑2)) ∈ ℤ) → ((𝑀 ∥ (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))) ∧ (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = 1) → 𝑀 ∥ ((𝐸↑2) + (𝐹↑2))))
1648, 98, 162, 163syl3anc 1326 . . . . 5 (𝜑 → ((𝑀 ∥ (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))) ∧ (𝑀 gcd ((𝐶 gcd 𝐷)↑2)) = 1) → 𝑀 ∥ ((𝐸↑2) + (𝐹↑2))))
16596, 160, 164mp2and 715 . . . 4 (𝜑𝑀 ∥ ((𝐸↑2) + (𝐹↑2)))
166 dvdsval2 14986 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ ((𝐸↑2) + (𝐹↑2)) ∈ ℤ) → (𝑀 ∥ ((𝐸↑2) + (𝐹↑2)) ↔ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ))
1678, 111, 162, 166syl3anc 1326 . . . 4 (𝜑 → (𝑀 ∥ ((𝐸↑2) + (𝐹↑2)) ↔ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ))
168165, 167mpbid 222 . . 3 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ)
16965nn0red 11352 . . . . 5 (𝜑 → (𝐸↑2) ∈ ℝ)
17074nn0red 11352 . . . . 5 (𝜑 → (𝐹↑2) ∈ ℝ)
171169, 170readdcld 10069 . . . 4 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℝ)
1725nnred 11035 . . . 4 (𝜑𝑀 ∈ ℝ)
1731, 472sqlem7 25149 . . . . . . 7 𝑌 ⊆ (𝑆 ∩ ℕ)
174 inss2 3834 . . . . . . 7 (𝑆 ∩ ℕ) ⊆ ℕ
175173, 174sstri 3612 . . . . . 6 𝑌 ⊆ ℕ
17663, 72gcdcld 15230 . . . . . . . . . 10 (𝜑 → (𝐸 gcd 𝐹) ∈ ℕ0)
177176nn0cnd 11353 . . . . . . . . 9 (𝜑 → (𝐸 gcd 𝐹) ∈ ℂ)
178 1cnd 10056 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
17977mulid1d 10057 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝐷) · 1) = (𝐶 gcd 𝐷))
18083, 91oveq12d 6668 . . . . . . . . . 10 (𝜑 → (((𝐶 gcd 𝐷) · 𝐸) gcd ((𝐶 gcd 𝐷) · 𝐹)) = (𝐶 gcd 𝐷))
18114, 20gcdcld 15230 . . . . . . . . . . 11 (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ0)
182 mulgcd 15265 . . . . . . . . . . 11 (((𝐶 gcd 𝐷) ∈ ℕ0𝐸 ∈ ℤ ∧ 𝐹 ∈ ℤ) → (((𝐶 gcd 𝐷) · 𝐸) gcd ((𝐶 gcd 𝐷) · 𝐹)) = ((𝐶 gcd 𝐷) · (𝐸 gcd 𝐹)))
183181, 63, 72, 182syl3anc 1326 . . . . . . . . . 10 (𝜑 → (((𝐶 gcd 𝐷) · 𝐸) gcd ((𝐶 gcd 𝐷) · 𝐹)) = ((𝐶 gcd 𝐷) · (𝐸 gcd 𝐹)))
184179, 180, 1833eqtr2rd 2663 . . . . . . . . 9 (𝜑 → ((𝐶 gcd 𝐷) · (𝐸 gcd 𝐹)) = ((𝐶 gcd 𝐷) · 1))
185177, 178, 77, 59, 184mulcanad 10662 . . . . . . . 8 (𝜑 → (𝐸 gcd 𝐹) = 1)
186 eqidd 2623 . . . . . . . 8 (𝜑 → ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝐹↑2)))
187 oveq1 6657 . . . . . . . . . . 11 (𝑥 = 𝐸 → (𝑥 gcd 𝑦) = (𝐸 gcd 𝑦))
188187eqeq1d 2624 . . . . . . . . . 10 (𝑥 = 𝐸 → ((𝑥 gcd 𝑦) = 1 ↔ (𝐸 gcd 𝑦) = 1))
189 oveq1 6657 . . . . . . . . . . . 12 (𝑥 = 𝐸 → (𝑥↑2) = (𝐸↑2))
190189oveq1d 6665 . . . . . . . . . . 11 (𝑥 = 𝐸 → ((𝑥↑2) + (𝑦↑2)) = ((𝐸↑2) + (𝑦↑2)))
191190eqeq2d 2632 . . . . . . . . . 10 (𝑥 = 𝐸 → (((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝑦↑2))))
192188, 191anbi12d 747 . . . . . . . . 9 (𝑥 = 𝐸 → (((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ ((𝐸 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝑦↑2)))))
193 oveq2 6658 . . . . . . . . . . 11 (𝑦 = 𝐹 → (𝐸 gcd 𝑦) = (𝐸 gcd 𝐹))
194193eqeq1d 2624 . . . . . . . . . 10 (𝑦 = 𝐹 → ((𝐸 gcd 𝑦) = 1 ↔ (𝐸 gcd 𝐹) = 1))
195 oveq1 6657 . . . . . . . . . . . 12 (𝑦 = 𝐹 → (𝑦↑2) = (𝐹↑2))
196195oveq2d 6666 . . . . . . . . . . 11 (𝑦 = 𝐹 → ((𝐸↑2) + (𝑦↑2)) = ((𝐸↑2) + (𝐹↑2)))
197196eqeq2d 2632 . . . . . . . . . 10 (𝑦 = 𝐹 → (((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝑦↑2)) ↔ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝐹↑2))))
198194, 197anbi12d 747 . . . . . . . . 9 (𝑦 = 𝐹 → (((𝐸 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝑦↑2))) ↔ ((𝐸 gcd 𝐹) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝐹↑2)))))
199192, 198rspc2ev 3324 . . . . . . . 8 ((𝐸 ∈ ℤ ∧ 𝐹 ∈ ℤ ∧ ((𝐸 gcd 𝐹) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝐸↑2) + (𝐹↑2)))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))))
20063, 72, 185, 186, 199syl112anc 1330 . . . . . . 7 (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))))
201 ovex 6678 . . . . . . . 8 ((𝐸↑2) + (𝐹↑2)) ∈ V
202 eqeq1 2626 . . . . . . . . . 10 (𝑧 = ((𝐸↑2) + (𝐹↑2)) → (𝑧 = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))))
203202anbi2d 740 . . . . . . . . 9 (𝑧 = ((𝐸↑2) + (𝐹↑2)) → (((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2)))))
2042032rexbidv 3057 . . . . . . . 8 (𝑧 = ((𝐸↑2) + (𝐹↑2)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2)))))
205201, 204, 47elab2 3354 . . . . . . 7 (((𝐸↑2) + (𝐹↑2)) ∈ 𝑌 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝐸↑2) + (𝐹↑2)) = ((𝑥↑2) + (𝑦↑2))))
206200, 205sylibr 224 . . . . . 6 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ 𝑌)
207175, 206sseldi 3601 . . . . 5 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℕ)
208207nngt0d 11064 . . . 4 (𝜑 → 0 < ((𝐸↑2) + (𝐹↑2)))
2095nngt0d 11064 . . . 4 (𝜑 → 0 < 𝑀)
210171, 172, 208, 209divgt0d 10959 . . 3 (𝜑 → 0 < (((𝐸↑2) + (𝐹↑2)) / 𝑀))
211 elnnz 11387 . . 3 ((((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℕ ↔ ((((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ ∧ 0 < (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
212168, 210, 211sylanbrc 698 . 2 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℕ)
213 prmnn 15388 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
214213ad2antrl 764 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ ℕ)
215214nnred 11035 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ ℝ)
216168adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ)
217216zred 11482 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℝ)
218 peano2zm 11420 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
2198, 218syl 17 . . . . . . . . . 10 (𝜑 → (𝑀 − 1) ∈ ℤ)
220219zred 11482 . . . . . . . . 9 (𝜑 → (𝑀 − 1) ∈ ℝ)
221220adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑀 − 1) ∈ ℝ)
222 simprr 796 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))
223 prmz 15389 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
224223ad2antrl 764 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ ℤ)
225212adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℕ)
226 dvdsle 15032 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℕ) → (𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) → 𝑝 ≤ (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
227224, 225, 226syl2anc 693 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) → 𝑝 ≤ (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
228222, 227mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ≤ (((𝐸↑2) + (𝐹↑2)) / 𝑀))
229 zsqcl 12934 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → (𝑀↑2) ∈ ℤ)
2308, 229syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑2) ∈ ℤ)
231230zred 11482 . . . . . . . . . . . . . 14 (𝜑 → (𝑀↑2) ∈ ℝ)
232231rehalfcld 11279 . . . . . . . . . . . . 13 (𝜑 → ((𝑀↑2) / 2) ∈ ℝ)
23316zred 11482 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶↑2) ∈ ℝ)
23422zred 11482 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷↑2) ∈ ℝ)
235233, 234readdcld 10069 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ∈ ℝ)
236 1red 10055 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
23750nnsqcld 13029 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℕ)
238237nnred 11035 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐶 gcd 𝐷)↑2) ∈ ℝ)
239161nn0ge0d 11354 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ ((𝐸↑2) + (𝐹↑2)))
240237nnge1d 11063 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ≤ ((𝐶 gcd 𝐷)↑2))
241236, 238, 171, 239, 240lemul1ad 10963 . . . . . . . . . . . . . . 15 (𝜑 → (1 · ((𝐸↑2) + (𝐹↑2))) ≤ (((𝐶 gcd 𝐷)↑2) · ((𝐸↑2) + (𝐹↑2))))
242161nn0cnd 11353 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℂ)
243242mulid2d 10058 . . . . . . . . . . . . . . 15 (𝜑 → (1 · ((𝐸↑2) + (𝐹↑2))) = ((𝐸↑2) + (𝐹↑2)))
244241, 243, 953brtr3d 4684 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((𝐶↑2) + (𝐷↑2)))
245232rehalfcld 11279 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑀↑2) / 2) / 2) ∈ ℝ)
24611, 5, 124sqlem7 15648 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶↑2) ≤ (((𝑀↑2) / 2) / 2))
24717, 5, 184sqlem7 15648 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷↑2) ≤ (((𝑀↑2) / 2) / 2))
248233, 234, 245, 245, 246, 247le2addd 10646 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ≤ ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)))
249232recnd 10068 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀↑2) / 2) ∈ ℂ)
2502492halvesd 11278 . . . . . . . . . . . . . . 15 (𝜑 → ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) = ((𝑀↑2) / 2))
251248, 250breqtrd 4679 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶↑2) + (𝐷↑2)) ≤ ((𝑀↑2) / 2))
252171, 235, 232, 244, 251letrd 10194 . . . . . . . . . . . . 13 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((𝑀↑2) / 2))
2535nnsqcld 13029 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑2) ∈ ℕ)
254253nnrpd 11870 . . . . . . . . . . . . . 14 (𝜑 → (𝑀↑2) ∈ ℝ+)
255 rphalflt 11860 . . . . . . . . . . . . . 14 ((𝑀↑2) ∈ ℝ+ → ((𝑀↑2) / 2) < (𝑀↑2))
256254, 255syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑀↑2) / 2) < (𝑀↑2))
257171, 232, 231, 252, 256lelttrd 10195 . . . . . . . . . . . 12 (𝜑 → ((𝐸↑2) + (𝐹↑2)) < (𝑀↑2))
2588zcnd 11483 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℂ)
259258sqvald 13005 . . . . . . . . . . . 12 (𝜑 → (𝑀↑2) = (𝑀 · 𝑀))
260257, 259breqtrd 4679 . . . . . . . . . . 11 (𝜑 → ((𝐸↑2) + (𝐹↑2)) < (𝑀 · 𝑀))
261 ltdivmul 10898 . . . . . . . . . . . 12 ((((𝐸↑2) + (𝐹↑2)) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → ((((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀 ↔ ((𝐸↑2) + (𝐹↑2)) < (𝑀 · 𝑀)))
262171, 172, 172, 209, 261syl112anc 1330 . . . . . . . . . . 11 (𝜑 → ((((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀 ↔ ((𝐸↑2) + (𝐹↑2)) < (𝑀 · 𝑀)))
263260, 262mpbird 247 . . . . . . . . . 10 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀)
264 zltlem1 11430 . . . . . . . . . . 11 (((((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀 ↔ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ≤ (𝑀 − 1)))
265168, 8, 264syl2anc 693 . . . . . . . . . 10 (𝜑 → ((((𝐸↑2) + (𝐹↑2)) / 𝑀) < 𝑀 ↔ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ≤ (𝑀 − 1)))
266263, 265mpbid 222 . . . . . . . . 9 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ≤ (𝑀 − 1))
267266adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ≤ (𝑀 − 1))
268215, 217, 221, 228, 267letrd 10194 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ≤ (𝑀 − 1))
269219adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑀 − 1) ∈ ℤ)
270 fznn 12408 . . . . . . . 8 ((𝑀 − 1) ∈ ℤ → (𝑝 ∈ (1...(𝑀 − 1)) ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ (𝑀 − 1))))
271269, 270syl 17 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑝 ∈ (1...(𝑀 − 1)) ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ (𝑀 − 1))))
272214, 268, 271mpbir2and 957 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∈ (1...(𝑀 − 1)))
273206adantr 481 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → ((𝐸↑2) + (𝐹↑2)) ∈ 𝑌)
274272, 273jca 554 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (𝑝 ∈ (1...(𝑀 − 1)) ∧ ((𝐸↑2) + (𝐹↑2)) ∈ 𝑌))
27548adantr 481 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
276 dvdsmul2 15004 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ (𝑀 · (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
2778, 168, 276syl2anc 693 . . . . . . . 8 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ (𝑀 · (((𝐸↑2) + (𝐹↑2)) / 𝑀)))
278242, 258, 111divcan2d 10803 . . . . . . . 8 (𝜑 → (𝑀 · (((𝐸↑2) + (𝐹↑2)) / 𝑀)) = ((𝐸↑2) + (𝐹↑2)))
279277, 278breqtrd 4679 . . . . . . 7 (𝜑 → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ ((𝐸↑2) + (𝐹↑2)))
280279adantr 481 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ ((𝐸↑2) + (𝐹↑2)))
281162adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → ((𝐸↑2) + (𝐹↑2)) ∈ ℤ)
282 dvdstr 15018 . . . . . . 7 ((𝑝 ∈ ℤ ∧ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∈ ℤ ∧ ((𝐸↑2) + (𝐹↑2)) ∈ ℤ) → ((𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∧ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ ((𝐸↑2) + (𝐹↑2))) → 𝑝 ∥ ((𝐸↑2) + (𝐹↑2))))
283224, 216, 281, 282syl3anc 1326 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → ((𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∧ (((𝐸↑2) + (𝐹↑2)) / 𝑀) ∥ ((𝐸↑2) + (𝐹↑2))) → 𝑝 ∥ ((𝐸↑2) + (𝐹↑2))))
284222, 280, 283mp2and 715 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝 ∥ ((𝐸↑2) + (𝐹↑2)))
285 breq1 4656 . . . . . . 7 (𝑏 = 𝑝 → (𝑏𝑎𝑝𝑎))
286 eleq1 2689 . . . . . . 7 (𝑏 = 𝑝 → (𝑏𝑆𝑝𝑆))
287285, 286imbi12d 334 . . . . . 6 (𝑏 = 𝑝 → ((𝑏𝑎𝑏𝑆) ↔ (𝑝𝑎𝑝𝑆)))
288 breq2 4657 . . . . . . 7 (𝑎 = ((𝐸↑2) + (𝐹↑2)) → (𝑝𝑎𝑝 ∥ ((𝐸↑2) + (𝐹↑2))))
289288imbi1d 331 . . . . . 6 (𝑎 = ((𝐸↑2) + (𝐹↑2)) → ((𝑝𝑎𝑝𝑆) ↔ (𝑝 ∥ ((𝐸↑2) + (𝐹↑2)) → 𝑝𝑆)))
290287, 289rspc2v 3322 . . . . 5 ((𝑝 ∈ (1...(𝑀 − 1)) ∧ ((𝐸↑2) + (𝐹↑2)) ∈ 𝑌) → (∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆) → (𝑝 ∥ ((𝐸↑2) + (𝐹↑2)) → 𝑝𝑆)))
291274, 275, 284, 290syl3c 66 . . . 4 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀))) → 𝑝𝑆)
292291expr 643 . . 3 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) → 𝑝𝑆))
293292ralrimiva 2966 . 2 (𝜑 → ∀𝑝 ∈ ℙ (𝑝 ∥ (((𝐸↑2) + (𝐹↑2)) / 𝑀) → 𝑝𝑆))
294 inss1 3833 . . . . 5 (𝑆 ∩ ℕ) ⊆ 𝑆
295173, 294sstri 3612 . . . 4 𝑌𝑆
296295, 206sseldi 3601 . . 3 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ 𝑆)
297278, 296eqeltrd 2701 . 2 (𝜑 → (𝑀 · (((𝐸↑2) + (𝐹↑2)) / 𝑀)) ∈ 𝑆)
2981, 5, 212, 293, 2972sqlem6 25148 1 (𝜑𝑀𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  cin 3573   class class class wbr 4653  cmpt 4729  ran crn 5115  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  +crp 11832  ...cfz 12326   mod cmo 12668  cexp 12860  abscabs 13974  cdvds 14983   gcd cgcd 15216  cprime 15385  ℤ[i]cgz 15633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-gz 15634
This theorem is referenced by:  2sqlem9  25152
  Copyright terms: Public domain W3C validator