MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem14 Structured version   Visualization version   Unicode version

Theorem ackbij1lem14 9055
Description: Lemma for ackbij1 9060. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f  |-  F  =  ( x  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ y  e.  x  ( {
y }  X.  ~P y ) ) )
Assertion
Ref Expression
ackbij1lem14  |-  ( A  e.  om  ->  ( F `  { A } )  =  suc  ( F `  A ) )
Distinct variable groups:    x, F, y    x, A, y

Proof of Theorem ackbij1lem14
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ackbij.f . . 3  |-  F  =  ( x  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ y  e.  x  ( {
y }  X.  ~P y ) ) )
21ackbij1lem8 9049 . 2  |-  ( A  e.  om  ->  ( F `  { A } )  =  (
card `  ~P A ) )
3 pweq 4161 . . . . 5  |-  ( a  =  (/)  ->  ~P a  =  ~P (/) )
43fveq2d 6195 . . . 4  |-  ( a  =  (/)  ->  ( card `  ~P a )  =  ( card `  ~P (/) ) )
5 fveq2 6191 . . . . 5  |-  ( a  =  (/)  ->  ( F `
 a )  =  ( F `  (/) ) )
6 suceq 5790 . . . . 5  |-  ( ( F `  a )  =  ( F `  (/) )  ->  suc  ( F `
 a )  =  suc  ( F `  (/) ) )
75, 6syl 17 . . . 4  |-  ( a  =  (/)  ->  suc  ( F `  a )  =  suc  ( F `  (/) ) )
84, 7eqeq12d 2637 . . 3  |-  ( a  =  (/)  ->  ( (
card `  ~P a
)  =  suc  ( F `  a )  <->  (
card `  ~P (/) )  =  suc  ( F `  (/) ) ) )
9 pweq 4161 . . . . 5  |-  ( a  =  b  ->  ~P a  =  ~P b
)
109fveq2d 6195 . . . 4  |-  ( a  =  b  ->  ( card `  ~P a )  =  ( card `  ~P b ) )
11 fveq2 6191 . . . . 5  |-  ( a  =  b  ->  ( F `  a )  =  ( F `  b ) )
12 suceq 5790 . . . . 5  |-  ( ( F `  a )  =  ( F `  b )  ->  suc  ( F `  a )  =  suc  ( F `
 b ) )
1311, 12syl 17 . . . 4  |-  ( a  =  b  ->  suc  ( F `  a )  =  suc  ( F `
 b ) )
1410, 13eqeq12d 2637 . . 3  |-  ( a  =  b  ->  (
( card `  ~P a
)  =  suc  ( F `  a )  <->  (
card `  ~P b
)  =  suc  ( F `  b )
) )
15 pweq 4161 . . . . 5  |-  ( a  =  suc  b  ->  ~P a  =  ~P suc  b )
1615fveq2d 6195 . . . 4  |-  ( a  =  suc  b  -> 
( card `  ~P a
)  =  ( card `  ~P suc  b ) )
17 fveq2 6191 . . . . 5  |-  ( a  =  suc  b  -> 
( F `  a
)  =  ( F `
 suc  b )
)
18 suceq 5790 . . . . 5  |-  ( ( F `  a )  =  ( F `  suc  b )  ->  suc  ( F `  a )  =  suc  ( F `
 suc  b )
)
1917, 18syl 17 . . . 4  |-  ( a  =  suc  b  ->  suc  ( F `  a
)  =  suc  ( F `  suc  b ) )
2016, 19eqeq12d 2637 . . 3  |-  ( a  =  suc  b  -> 
( ( card `  ~P a )  =  suc  ( F `  a )  <-> 
( card `  ~P suc  b
)  =  suc  ( F `  suc  b ) ) )
21 pweq 4161 . . . . 5  |-  ( a  =  A  ->  ~P a  =  ~P A
)
2221fveq2d 6195 . . . 4  |-  ( a  =  A  ->  ( card `  ~P a )  =  ( card `  ~P A ) )
23 fveq2 6191 . . . . 5  |-  ( a  =  A  ->  ( F `  a )  =  ( F `  A ) )
24 suceq 5790 . . . . 5  |-  ( ( F `  a )  =  ( F `  A )  ->  suc  ( F `  a )  =  suc  ( F `
 A ) )
2523, 24syl 17 . . . 4  |-  ( a  =  A  ->  suc  ( F `  a )  =  suc  ( F `
 A ) )
2622, 25eqeq12d 2637 . . 3  |-  ( a  =  A  ->  (
( card `  ~P a
)  =  suc  ( F `  a )  <->  (
card `  ~P A )  =  suc  ( F `
 A ) ) )
27 df-1o 7560 . . . 4  |-  1o  =  suc  (/)
28 pw0 4343 . . . . . 6  |-  ~P (/)  =  { (/)
}
2928fveq2i 6194 . . . . 5  |-  ( card `  ~P (/) )  =  (
card `  { (/) } )
30 0ex 4790 . . . . . 6  |-  (/)  e.  _V
31 cardsn 8795 . . . . . 6  |-  ( (/)  e.  _V  ->  ( card `  { (/) } )  =  1o )
3230, 31ax-mp 5 . . . . 5  |-  ( card `  { (/) } )  =  1o
3329, 32eqtri 2644 . . . 4  |-  ( card `  ~P (/) )  =  1o
341ackbij1lem13 9054 . . . . 5  |-  ( F `
 (/) )  =  (/)
35 suceq 5790 . . . . 5  |-  ( ( F `  (/) )  =  (/)  ->  suc  ( F `  (/) )  =  suc  (/) )
3634, 35ax-mp 5 . . . 4  |-  suc  ( F `  (/) )  =  suc  (/)
3727, 33, 363eqtr4i 2654 . . 3  |-  ( card `  ~P (/) )  =  suc  ( F `  (/) )
38 oveq2 6658 . . . . . 6  |-  ( (
card `  ~P b
)  =  suc  ( F `  b )  ->  ( ( card `  ~P b )  +o  ( card `  ~P b ) )  =  ( (
card `  ~P b
)  +o  suc  ( F `  b )
) )
3938adantl 482 . . . . 5  |-  ( ( b  e.  om  /\  ( card `  ~P b
)  =  suc  ( F `  b )
)  ->  ( ( card `  ~P b )  +o  ( card `  ~P b ) )  =  ( ( card `  ~P b )  +o  suc  ( F `  b ) ) )
40 ackbij1lem5 9046 . . . . . 6  |-  ( b  e.  om  ->  ( card `  ~P suc  b
)  =  ( (
card `  ~P b
)  +o  ( card `  ~P b ) ) )
4140adantr 481 . . . . 5  |-  ( ( b  e.  om  /\  ( card `  ~P b
)  =  suc  ( F `  b )
)  ->  ( card `  ~P suc  b )  =  ( ( card `  ~P b )  +o  ( card `  ~P b ) ) )
42 df-suc 5729 . . . . . . . . . 10  |-  suc  b  =  ( b  u. 
{ b } )
4342equncomi 3759 . . . . . . . . 9  |-  suc  b  =  ( { b }  u.  b )
4443fveq2i 6194 . . . . . . . 8  |-  ( F `
 suc  b )  =  ( F `  ( { b }  u.  b ) )
45 ackbij1lem4 9045 . . . . . . . . . . 11  |-  ( b  e.  om  ->  { b }  e.  ( ~P
om  i^i  Fin )
)
4645adantr 481 . . . . . . . . . 10  |-  ( ( b  e.  om  /\  ( card `  ~P b
)  =  suc  ( F `  b )
)  ->  { b }  e.  ( ~P om  i^i  Fin ) )
47 ackbij1lem3 9044 . . . . . . . . . . 11  |-  ( b  e.  om  ->  b  e.  ( ~P om  i^i  Fin ) )
4847adantr 481 . . . . . . . . . 10  |-  ( ( b  e.  om  /\  ( card `  ~P b
)  =  suc  ( F `  b )
)  ->  b  e.  ( ~P om  i^i  Fin ) )
49 incom 3805 . . . . . . . . . . . 12  |-  ( { b }  i^i  b
)  =  ( b  i^i  { b } )
50 nnord 7073 . . . . . . . . . . . . 13  |-  ( b  e.  om  ->  Ord  b )
51 orddisj 5762 . . . . . . . . . . . . 13  |-  ( Ord  b  ->  ( b  i^i  { b } )  =  (/) )
5250, 51syl 17 . . . . . . . . . . . 12  |-  ( b  e.  om  ->  (
b  i^i  { b } )  =  (/) )
5349, 52syl5eq 2668 . . . . . . . . . . 11  |-  ( b  e.  om  ->  ( { b }  i^i  b )  =  (/) )
5453adantr 481 . . . . . . . . . 10  |-  ( ( b  e.  om  /\  ( card `  ~P b
)  =  suc  ( F `  b )
)  ->  ( {
b }  i^i  b
)  =  (/) )
551ackbij1lem9 9050 . . . . . . . . . 10  |-  ( ( { b }  e.  ( ~P om  i^i  Fin )  /\  b  e.  ( ~P om  i^i  Fin )  /\  ( { b }  i^i  b )  =  (/) )  ->  ( F `  ( {
b }  u.  b
) )  =  ( ( F `  {
b } )  +o  ( F `  b
) ) )
5646, 48, 54, 55syl3anc 1326 . . . . . . . . 9  |-  ( ( b  e.  om  /\  ( card `  ~P b
)  =  suc  ( F `  b )
)  ->  ( F `  ( { b }  u.  b ) )  =  ( ( F `
 { b } )  +o  ( F `
 b ) ) )
571ackbij1lem8 9049 . . . . . . . . . . 11  |-  ( b  e.  om  ->  ( F `  { b } )  =  (
card `  ~P b
) )
5857adantr 481 . . . . . . . . . 10  |-  ( ( b  e.  om  /\  ( card `  ~P b
)  =  suc  ( F `  b )
)  ->  ( F `  { b } )  =  ( card `  ~P b ) )
5958oveq1d 6665 . . . . . . . . 9  |-  ( ( b  e.  om  /\  ( card `  ~P b
)  =  suc  ( F `  b )
)  ->  ( ( F `  { b } )  +o  ( F `  b )
)  =  ( (
card `  ~P b
)  +o  ( F `
 b ) ) )
6056, 59eqtrd 2656 . . . . . . . 8  |-  ( ( b  e.  om  /\  ( card `  ~P b
)  =  suc  ( F `  b )
)  ->  ( F `  ( { b }  u.  b ) )  =  ( ( card `  ~P b )  +o  ( F `  b
) ) )
6144, 60syl5eq 2668 . . . . . . 7  |-  ( ( b  e.  om  /\  ( card `  ~P b
)  =  suc  ( F `  b )
)  ->  ( F `  suc  b )  =  ( ( card `  ~P b )  +o  ( F `  b )
) )
62 suceq 5790 . . . . . . 7  |-  ( ( F `  suc  b
)  =  ( (
card `  ~P b
)  +o  ( F `
 b ) )  ->  suc  ( F `  suc  b )  =  suc  ( ( card `  ~P b )  +o  ( F `  b
) ) )
6361, 62syl 17 . . . . . 6  |-  ( ( b  e.  om  /\  ( card `  ~P b
)  =  suc  ( F `  b )
)  ->  suc  ( F `
 suc  b )  =  suc  ( ( card `  ~P b )  +o  ( F `  b
) ) )
64 nnfi 8153 . . . . . . . . . 10  |-  ( b  e.  om  ->  b  e.  Fin )
65 pwfi 8261 . . . . . . . . . 10  |-  ( b  e.  Fin  <->  ~P b  e.  Fin )
6664, 65sylib 208 . . . . . . . . 9  |-  ( b  e.  om  ->  ~P b  e.  Fin )
6766adantr 481 . . . . . . . 8  |-  ( ( b  e.  om  /\  ( card `  ~P b
)  =  suc  ( F `  b )
)  ->  ~P b  e.  Fin )
68 ficardom 8787 . . . . . . . 8  |-  ( ~P b  e.  Fin  ->  (
card `  ~P b
)  e.  om )
6967, 68syl 17 . . . . . . 7  |-  ( ( b  e.  om  /\  ( card `  ~P b
)  =  suc  ( F `  b )
)  ->  ( card `  ~P b )  e. 
om )
701ackbij1lem10 9051 . . . . . . . . 9  |-  F :
( ~P om  i^i  Fin ) --> om
7170ffvelrni 6358 . . . . . . . 8  |-  ( b  e.  ( ~P om  i^i  Fin )  ->  ( F `  b )  e.  om )
7248, 71syl 17 . . . . . . 7  |-  ( ( b  e.  om  /\  ( card `  ~P b
)  =  suc  ( F `  b )
)  ->  ( F `  b )  e.  om )
73 nnasuc 7686 . . . . . . 7  |-  ( ( ( card `  ~P b )  e.  om  /\  ( F `  b
)  e.  om )  ->  ( ( card `  ~P b )  +o  suc  ( F `  b ) )  =  suc  (
( card `  ~P b
)  +o  ( F `
 b ) ) )
7469, 72, 73syl2anc 693 . . . . . 6  |-  ( ( b  e.  om  /\  ( card `  ~P b
)  =  suc  ( F `  b )
)  ->  ( ( card `  ~P b )  +o  suc  ( F `
 b ) )  =  suc  ( (
card `  ~P b
)  +o  ( F `
 b ) ) )
7563, 74eqtr4d 2659 . . . . 5  |-  ( ( b  e.  om  /\  ( card `  ~P b
)  =  suc  ( F `  b )
)  ->  suc  ( F `
 suc  b )  =  ( ( card `  ~P b )  +o 
suc  ( F `  b ) ) )
7639, 41, 753eqtr4d 2666 . . . 4  |-  ( ( b  e.  om  /\  ( card `  ~P b
)  =  suc  ( F `  b )
)  ->  ( card `  ~P suc  b )  =  suc  ( F `
 suc  b )
)
7776ex 450 . . 3  |-  ( b  e.  om  ->  (
( card `  ~P b
)  =  suc  ( F `  b )  ->  ( card `  ~P suc  b )  =  suc  ( F `  suc  b
) ) )
788, 14, 20, 26, 37, 77finds 7092 . 2  |-  ( A  e.  om  ->  ( card `  ~P A )  =  suc  ( F `
 A ) )
792, 78eqtrd 2656 1  |-  ( A  e.  om  ->  ( F `  { A } )  =  suc  ( F `  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    i^i cin 3573   (/)c0 3915   ~Pcpw 4158   {csn 4177   U_ciun 4520    |-> cmpt 4729    X. cxp 5112   Ord word 5722   suc csuc 5725   ` cfv 5888  (class class class)co 6650   omcom 7065   1oc1o 7553    +o coa 7557   Fincfn 7955   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990
This theorem is referenced by:  ackbij1lem15  9056  ackbij1lem18  9059  ackbij1b  9061
  Copyright terms: Public domain W3C validator