![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ausgrumgri | Structured version Visualization version GIF version |
Description: If an alternatively defined simple graph has the vertices and edges of an arbitrary graph, the arbitrary graph is an undirected multigraph. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 25-Nov-2020.) |
Ref | Expression |
---|---|
ausgr.1 | ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (#‘𝑥) = 2}} |
Ref | Expression |
---|---|
ausgrumgri | ⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ Fun (iEdg‘𝐻)) → 𝐻 ∈ UMGraph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6201 | . . . . 5 ⊢ (Vtx‘𝐻) ∈ V | |
2 | fvex 6201 | . . . . 5 ⊢ (Edg‘𝐻) ∈ V | |
3 | ausgr.1 | . . . . . 6 ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ (#‘𝑥) = 2}} | |
4 | 3 | isausgr 26059 | . . . . 5 ⊢ (((Vtx‘𝐻) ∈ V ∧ (Edg‘𝐻) ∈ V) → ((Vtx‘𝐻)𝐺(Edg‘𝐻) ↔ (Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2})) |
5 | 1, 2, 4 | mp2an 708 | . . . 4 ⊢ ((Vtx‘𝐻)𝐺(Edg‘𝐻) ↔ (Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2}) |
6 | edgval 25941 | . . . . . . 7 ⊢ (Edg‘𝐻) = ran (iEdg‘𝐻) | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝐻 ∈ 𝑊 → (Edg‘𝐻) = ran (iEdg‘𝐻)) |
8 | 7 | sseq1d 3632 | . . . . 5 ⊢ (𝐻 ∈ 𝑊 → ((Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2} ↔ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2})) |
9 | funfn 5918 | . . . . . . . . 9 ⊢ (Fun (iEdg‘𝐻) ↔ (iEdg‘𝐻) Fn dom (iEdg‘𝐻)) | |
10 | 9 | biimpi 206 | . . . . . . . 8 ⊢ (Fun (iEdg‘𝐻) → (iEdg‘𝐻) Fn dom (iEdg‘𝐻)) |
11 | 10 | 3ad2ant3 1084 | . . . . . . 7 ⊢ ((𝐻 ∈ 𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2} ∧ Fun (iEdg‘𝐻)) → (iEdg‘𝐻) Fn dom (iEdg‘𝐻)) |
12 | simp2 1062 | . . . . . . 7 ⊢ ((𝐻 ∈ 𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2} ∧ Fun (iEdg‘𝐻)) → ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2}) | |
13 | df-f 5892 | . . . . . . 7 ⊢ ((iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2} ↔ ((iEdg‘𝐻) Fn dom (iEdg‘𝐻) ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2})) | |
14 | 11, 12, 13 | sylanbrc 698 | . . . . . 6 ⊢ ((𝐻 ∈ 𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2} ∧ Fun (iEdg‘𝐻)) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2}) |
15 | 14 | 3exp 1264 | . . . . 5 ⊢ (𝐻 ∈ 𝑊 → (ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2} → (Fun (iEdg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2}))) |
16 | 8, 15 | sylbid 230 | . . . 4 ⊢ (𝐻 ∈ 𝑊 → ((Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2} → (Fun (iEdg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2}))) |
17 | 5, 16 | syl5bi 232 | . . 3 ⊢ (𝐻 ∈ 𝑊 → ((Vtx‘𝐻)𝐺(Edg‘𝐻) → (Fun (iEdg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2}))) |
18 | 17 | 3imp 1256 | . 2 ⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ Fun (iEdg‘𝐻)) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2}) |
19 | eqid 2622 | . . . 4 ⊢ (Vtx‘𝐻) = (Vtx‘𝐻) | |
20 | eqid 2622 | . . . 4 ⊢ (iEdg‘𝐻) = (iEdg‘𝐻) | |
21 | 19, 20 | isumgrs 25991 | . . 3 ⊢ (𝐻 ∈ 𝑊 → (𝐻 ∈ UMGraph ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2})) |
22 | 21 | 3ad2ant1 1082 | . 2 ⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ Fun (iEdg‘𝐻)) → (𝐻 ∈ UMGraph ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (#‘𝑥) = 2})) |
23 | 18, 22 | mpbird 247 | 1 ⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ Fun (iEdg‘𝐻)) → 𝐻 ∈ UMGraph ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 {crab 2916 Vcvv 3200 ⊆ wss 3574 𝒫 cpw 4158 class class class wbr 4653 {copab 4712 dom cdm 5114 ran crn 5115 Fun wfun 5882 Fn wfn 5883 ⟶wf 5884 ‘cfv 5888 2c2 11070 #chash 13117 Vtxcvtx 25874 iEdgciedg 25875 Edgcedg 25939 UMGraph cumgr 25976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-hash 13118 df-edg 25940 df-umgr 25978 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |