Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnsubaddlem2 Structured version   Visualization version   GIF version

Theorem ovnsubaddlem2 40785
Description: (voln*‘𝑋) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovnsubaddlem2.x (𝜑𝑋 ∈ Fin)
ovnsubaddlem2.n0 (𝜑𝑋 ≠ ∅)
ovnsubaddlem2.a (𝜑𝐴:ℕ⟶𝒫 (ℝ ↑𝑚 𝑋))
ovnsubaddlem2.e (𝜑𝐸 ∈ ℝ+)
ovnsubaddlem2.z 𝑍 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
ovnsubaddlem2.c 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
ovnsubaddlem2.l 𝐿 = ( ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
ovnsubaddlem2.d 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}))
Assertion
Ref Expression
ovnsubaddlem2 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑎,𝑒,𝑖,𝑗,𝑛   𝐴,𝑘,𝑙,𝑎,𝑖,𝑗,𝑛   𝑧,𝐴,𝑎,𝑖,𝑗,𝑘,𝑛   𝐶,𝑎,𝑒,𝑖   𝐷,𝑎,𝑒,𝑖,𝑗,𝑛   𝐷,𝑘   𝐸,𝑎,𝑒,𝑖,𝑗,𝑛   𝑘,𝐸   𝐿,𝑎,𝑒,𝑖,𝑗,𝑛   𝑋,𝑎,𝑒,𝑖,𝑗,𝑛   ,𝑋,𝑘,𝑖,𝑗   𝑋,𝑙   𝑧,𝑋   𝜑,𝑎,𝑒,𝑖,𝑗,𝑛   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑧,,𝑙)   𝐴()   𝐶(𝑧,,𝑗,𝑘,𝑛,𝑙)   𝐷(𝑧,,𝑙)   𝐸(𝑧,,𝑙)   𝐿(𝑧,,𝑘,𝑙)   𝑍(𝑧,𝑒,,𝑖,𝑗,𝑘,𝑛,𝑎,𝑙)

Proof of Theorem ovnsubaddlem2
Dummy variables 𝑓 𝑔 𝑚 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6201 . . . 4 ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ∈ V
2 nnenom 12779 . . . 4 ℕ ≈ ω
31, 2axcc3 9260 . . 3 𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
4 simprl 794 . . . . . 6 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))) → 𝑔 Fn ℕ)
5 nfv 1843 . . . . . . . . 9 𝑛𝜑
6 nfra1 2941 . . . . . . . . 9 𝑛𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
75, 6nfan 1828 . . . . . . . 8 𝑛(𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
8 rspa 2930 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑛 ∈ ℕ) → (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
98adantll 750 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) ∧ 𝑛 ∈ ℕ) → (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
10 ovnsubaddlem2.x . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ Fin)
1110adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
12 ovnsubaddlem2.n0 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ≠ ∅)
1312adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝑋 ≠ ∅)
14 ovnsubaddlem2.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴:ℕ⟶𝒫 (ℝ ↑𝑚 𝑋))
1514adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝐴:ℕ⟶𝒫 (ℝ ↑𝑚 𝑋))
16 simpr 477 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
1715, 16ffvelrnd 6360 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ 𝒫 (ℝ ↑𝑚 𝑋))
18 elpwi 4168 . . . . . . . . . . . . . . . . 17 ((𝐴𝑛) ∈ 𝒫 (ℝ ↑𝑚 𝑋) → (𝐴𝑛) ⊆ (ℝ ↑𝑚 𝑋))
1917, 18syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ⊆ (ℝ ↑𝑚 𝑋))
20 ovnsubaddlem2.e . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ ℝ+)
2120adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → 𝐸 ∈ ℝ+)
22 nnnn0 11299 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
23 2nn 11185 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℕ
2423a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ0 → 2 ∈ ℕ)
25 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
26 nnexpcl 12873 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
2724, 25, 26syl2anc 693 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℕ)
28 nnrp 11842 . . . . . . . . . . . . . . . . . . . 20 ((2↑𝑛) ∈ ℕ → (2↑𝑛) ∈ ℝ+)
2927, 28syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℝ+)
3022, 29syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ+)
3130adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+)
3221, 31rpdivcld 11889 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝐸 / (2↑𝑛)) ∈ ℝ+)
33 ovnsubaddlem2.c . . . . . . . . . . . . . . . 16 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
34 ovnsubaddlem2.l . . . . . . . . . . . . . . . 16 𝐿 = ( ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
35 ovnsubaddlem2.d . . . . . . . . . . . . . . . 16 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}))
3611, 13, 19, 32, 33, 34, 35ovncvrrp 40778 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ∃𝑖 𝑖 ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
37 n0 3931 . . . . . . . . . . . . . . 15 (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ ↔ ∃𝑖 𝑖 ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
3836, 37sylibr 224 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅)
3938adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅)
40 simpr 477 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
4139, 40mpd 15 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
4241ex 450 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
4342adantlr 751 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) ∧ 𝑛 ∈ ℕ) → ((((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
449, 43mpd 15 . . . . . . . . 9 (((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) ∧ 𝑛 ∈ ℕ) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
4544ex 450 . . . . . . . 8 ((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → (𝑛 ∈ ℕ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
467, 45ralrimi 2957 . . . . . . 7 ((𝜑 ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
4746adantrl 752 . . . . . 6 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
484, 47jca 554 . . . . 5 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))) → (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
4948ex 450 . . . 4 (𝜑 → ((𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))))
5049eximdv 1846 . . 3 (𝜑 → (∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ≠ ∅ → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))))
513, 50mpi 20 . 2 (𝜑 → ∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
52 simpl 473 . . . . 5 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → 𝜑)
53 simprl 794 . . . . 5 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → 𝑔 Fn ℕ)
54 simprr 796 . . . . 5 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
55 nnf1oxpnn 39384 . . . . . 6 𝑓 𝑓:ℕ–1-1-onto→(ℕ × ℕ)
56 simpl1 1064 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝜑)
57 simpl2 1065 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑔 Fn ℕ)
58 fveq2 6191 . . . . . . . . . . . . . 14 (𝑞 = 𝑛 → (𝑔𝑞) = (𝑔𝑛))
59 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑛 → (𝐴𝑞) = (𝐴𝑛))
6059fveq2d 6195 . . . . . . . . . . . . . . 15 (𝑞 = 𝑛 → (𝐷‘(𝐴𝑞)) = (𝐷‘(𝐴𝑛)))
61 oveq2 6658 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑛 → (2↑𝑞) = (2↑𝑛))
6261oveq2d 6666 . . . . . . . . . . . . . . 15 (𝑞 = 𝑛 → (𝐸 / (2↑𝑞)) = (𝐸 / (2↑𝑛)))
6360, 62fveq12d 6197 . . . . . . . . . . . . . 14 (𝑞 = 𝑛 → ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))) = ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
6458, 63eleq12d 2695 . . . . . . . . . . . . 13 (𝑞 = 𝑛 → ((𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))) ↔ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))))
6564cbvralv 3171 . . . . . . . . . . . 12 (∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))) ↔ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
6665biimpri 218 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) → ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))))
67663ad2ant3 1084 . . . . . . . . . 10 ((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))))
6867adantr 481 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))))
69 simpr 477 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑓:ℕ–1-1-onto→(ℕ × ℕ))
7010adantr 481 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ∈ Fin)
71703ad2antl1 1223 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ∈ Fin)
7212adantr 481 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ≠ ∅)
73723ad2antl1 1223 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑋 ≠ ∅)
7414adantr 481 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐴:ℕ⟶𝒫 (ℝ ↑𝑚 𝑋))
75743ad2antl1 1223 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐴:ℕ⟶𝒫 (ℝ ↑𝑚 𝑋))
7620adantr 481 . . . . . . . . . . 11 ((𝜑𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐸 ∈ ℝ+)
77763ad2antl1 1223 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝐸 ∈ ℝ+)
78 ovnsubaddlem2.z . . . . . . . . . 10 𝑍 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
79 coeq2 5280 . . . . . . . . . . . . . . 15 ( = 𝑖 → ([,) ∘ ) = ([,) ∘ 𝑖))
8079fveq1d 6193 . . . . . . . . . . . . . 14 ( = 𝑖 → (([,) ∘ )‘𝑘) = (([,) ∘ 𝑖)‘𝑘))
8180fveq2d 6195 . . . . . . . . . . . . 13 ( = 𝑖 → (vol‘(([,) ∘ )‘𝑘)) = (vol‘(([,) ∘ 𝑖)‘𝑘)))
8281prodeq2ad 39824 . . . . . . . . . . . 12 ( = 𝑖 → ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))
8382cbvmptv 4750 . . . . . . . . . . 11 ( ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘))) = (𝑖 ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))
8434, 83eqtri 2644 . . . . . . . . . 10 𝐿 = (𝑖 ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘)))
8565biimpi 206 . . . . . . . . . . . . 13 (∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
86853ad2ant3 1084 . . . . . . . . . . . 12 ((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
8786ad2antrr 762 . . . . . . . . . . 11 ((((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) ∧ 𝑛 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
88 simpr 477 . . . . . . . . . . 11 ((((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
89 rspa 2930 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))) ∧ 𝑛 ∈ ℕ) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
9087, 88, 89syl2anc 693 . . . . . . . . . 10 ((((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) ∧ 𝑛 ∈ ℕ) → (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))
91 simpr 477 . . . . . . . . . 10 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → 𝑓:ℕ–1-1-onto→(ℕ × ℕ))
92 fveq2 6191 . . . . . . . . . . . . . 14 (𝑞 = 𝑚 → (𝑓𝑞) = (𝑓𝑚))
9392fveq2d 6195 . . . . . . . . . . . . 13 (𝑞 = 𝑚 → (1st ‘(𝑓𝑞)) = (1st ‘(𝑓𝑚)))
9493fveq2d 6195 . . . . . . . . . . . 12 (𝑞 = 𝑚 → (𝑔‘(1st ‘(𝑓𝑞))) = (𝑔‘(1st ‘(𝑓𝑚))))
9592fveq2d 6195 . . . . . . . . . . . 12 (𝑞 = 𝑚 → (2nd ‘(𝑓𝑞)) = (2nd ‘(𝑓𝑚)))
9694, 95fveq12d 6197 . . . . . . . . . . 11 (𝑞 = 𝑚 → ((𝑔‘(1st ‘(𝑓𝑞)))‘(2nd ‘(𝑓𝑞))) = ((𝑔‘(1st ‘(𝑓𝑚)))‘(2nd ‘(𝑓𝑚))))
9796cbvmptv 4750 . . . . . . . . . 10 (𝑞 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑓𝑞)))‘(2nd ‘(𝑓𝑞)))) = (𝑚 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑓𝑚)))‘(2nd ‘(𝑓𝑚))))
9871, 73, 75, 77, 78, 33, 84, 35, 90, 91, 97ovnsubaddlem1 40784 . . . . . . . . 9 (((𝜑𝑔 Fn ℕ ∧ ∀𝑞 ∈ ℕ (𝑔𝑞) ∈ ((𝐷‘(𝐴𝑞))‘(𝐸 / (2↑𝑞)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
9956, 57, 68, 69, 98syl31anc 1329 . . . . . . . 8 (((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) ∧ 𝑓:ℕ–1-1-onto→(ℕ × ℕ)) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
10099ex 450 . . . . . . 7 ((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → (𝑓:ℕ–1-1-onto→(ℕ × ℕ) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸)))
101100exlimdv 1861 . . . . . 6 ((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → (∃𝑓 𝑓:ℕ–1-1-onto→(ℕ × ℕ) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸)))
10255, 101mpi 20 . . . . 5 ((𝜑𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
10352, 53, 54, 102syl3anc 1326 . . . 4 ((𝜑 ∧ (𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛))))) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
104103ex 450 . . 3 (𝜑 → ((𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸)))
105104exlimdv 1861 . 2 (𝜑 → (∃𝑔(𝑔 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∈ ((𝐷‘(𝐴𝑛))‘(𝐸 / (2↑𝑛)))) → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸)))
10651, 105mpd 15 1 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐴𝑛)) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴𝑛)))) +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  wss 3574  c0 3915  𝒫 cpw 4158   ciun 4520   class class class wbr 4653  cmpt 4729   × cxp 5112  ccom 5118   Fn wfn 5883  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  𝑚 cmap 7857  Xcixp 7908  Fincfn 7955  cr 9935  *cxr 10073  cle 10075   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  +crp 11832   +𝑒 cxad 11944  [,)cico 12177  cexp 12860  cprod 14635  volcvol 23232  Σ^csumge0 40579  voln*covoln 40750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-prod 14636  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-0g 16102  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-sumge0 40580  df-ovoln 40751
This theorem is referenced by:  ovnsubadd  40786
  Copyright terms: Public domain W3C validator