![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > birthdaylem1 | Structured version Visualization version GIF version |
Description: Lemma for birthday 24681. (Contributed by Mario Carneiro, 17-Apr-2015.) |
Ref | Expression |
---|---|
birthday.s | ⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} |
birthday.t | ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} |
Ref | Expression |
---|---|
birthdaylem1 | ⊢ (𝑇 ⊆ 𝑆 ∧ 𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6101 | . . . 4 ⊢ (𝑓:(1...𝐾)–1-1→(1...𝑁) → 𝑓:(1...𝐾)⟶(1...𝑁)) | |
2 | 1 | ss2abi 3674 | . . 3 ⊢ {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} ⊆ {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} |
3 | birthday.t | . . 3 ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} | |
4 | birthday.s | . . 3 ⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} | |
5 | 2, 3, 4 | 3sstr4i 3644 | . 2 ⊢ 𝑇 ⊆ 𝑆 |
6 | fzfi 12771 | . . . . 5 ⊢ (1...𝑁) ∈ Fin | |
7 | fzfi 12771 | . . . . 5 ⊢ (1...𝐾) ∈ Fin | |
8 | mapvalg 7867 | . . . . 5 ⊢ (((1...𝑁) ∈ Fin ∧ (1...𝐾) ∈ Fin) → ((1...𝑁) ↑𝑚 (1...𝐾)) = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)}) | |
9 | 6, 7, 8 | mp2an 708 | . . . 4 ⊢ ((1...𝑁) ↑𝑚 (1...𝐾)) = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} |
10 | 4, 9 | eqtr4i 2647 | . . 3 ⊢ 𝑆 = ((1...𝑁) ↑𝑚 (1...𝐾)) |
11 | mapfi 8262 | . . . 4 ⊢ (((1...𝑁) ∈ Fin ∧ (1...𝐾) ∈ Fin) → ((1...𝑁) ↑𝑚 (1...𝐾)) ∈ Fin) | |
12 | 6, 7, 11 | mp2an 708 | . . 3 ⊢ ((1...𝑁) ↑𝑚 (1...𝐾)) ∈ Fin |
13 | 10, 12 | eqeltri 2697 | . 2 ⊢ 𝑆 ∈ Fin |
14 | elfz1end 12371 | . . . 4 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁)) | |
15 | ne0i 3921 | . . . 4 ⊢ (𝑁 ∈ (1...𝑁) → (1...𝑁) ≠ ∅) | |
16 | 14, 15 | sylbi 207 | . . 3 ⊢ (𝑁 ∈ ℕ → (1...𝑁) ≠ ∅) |
17 | 10 | eqeq1i 2627 | . . . . 5 ⊢ (𝑆 = ∅ ↔ ((1...𝑁) ↑𝑚 (1...𝐾)) = ∅) |
18 | ovex 6678 | . . . . . . 7 ⊢ (1...𝑁) ∈ V | |
19 | ovex 6678 | . . . . . . 7 ⊢ (1...𝐾) ∈ V | |
20 | 18, 19 | map0 7898 | . . . . . 6 ⊢ (((1...𝑁) ↑𝑚 (1...𝐾)) = ∅ ↔ ((1...𝑁) = ∅ ∧ (1...𝐾) ≠ ∅)) |
21 | 20 | simplbi 476 | . . . . 5 ⊢ (((1...𝑁) ↑𝑚 (1...𝐾)) = ∅ → (1...𝑁) = ∅) |
22 | 17, 21 | sylbi 207 | . . . 4 ⊢ (𝑆 = ∅ → (1...𝑁) = ∅) |
23 | 22 | necon3i 2826 | . . 3 ⊢ ((1...𝑁) ≠ ∅ → 𝑆 ≠ ∅) |
24 | 16, 23 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑆 ≠ ∅) |
25 | 5, 13, 24 | 3pm3.2i 1239 | 1 ⊢ (𝑇 ⊆ 𝑆 ∧ 𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 {cab 2608 ≠ wne 2794 ⊆ wss 3574 ∅c0 3915 ⟶wf 5884 –1-1→wf1 5885 (class class class)co 6650 ↑𝑚 cmap 7857 Fincfn 7955 1c1 9937 ℕcn 11020 ...cfz 12326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 |
This theorem is referenced by: birthdaylem3 24680 birthday 24681 |
Copyright terms: Public domain | W3C validator |