| Step | Hyp | Ref
| Expression |
| 1 | | remet.1 |
. . . . 5
⊢ 𝐷 = ((abs ∘ − )
↾ (ℝ × ℝ)) |
| 2 | 1 | rexmet 22594 |
. . . 4
⊢ 𝐷 ∈
(∞Met‘ℝ) |
| 3 | | blrn 22214 |
. . . 4
⊢ (𝐷 ∈
(∞Met‘ℝ) → (𝑧 ∈ ran (ball‘𝐷) ↔ ∃𝑦 ∈ ℝ ∃𝑟 ∈ ℝ* 𝑧 = (𝑦(ball‘𝐷)𝑟))) |
| 4 | 2, 3 | ax-mp 5 |
. . 3
⊢ (𝑧 ∈ ran (ball‘𝐷) ↔ ∃𝑦 ∈ ℝ ∃𝑟 ∈ ℝ*
𝑧 = (𝑦(ball‘𝐷)𝑟)) |
| 5 | | elxr 11950 |
. . . . . 6
⊢ (𝑟 ∈ ℝ*
↔ (𝑟 ∈ ℝ
∨ 𝑟 = +∞ ∨
𝑟 =
-∞)) |
| 6 | 1 | bl2ioo 22595 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑦(ball‘𝐷)𝑟) = ((𝑦 − 𝑟)(,)(𝑦 + 𝑟))) |
| 7 | | resubcl 10345 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑦 − 𝑟) ∈ ℝ) |
| 8 | | readdcl 10019 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑦 + 𝑟) ∈ ℝ) |
| 9 | | rexr 10085 |
. . . . . . . . . 10
⊢ ((𝑦 − 𝑟) ∈ ℝ → (𝑦 − 𝑟) ∈
ℝ*) |
| 10 | | rexr 10085 |
. . . . . . . . . 10
⊢ ((𝑦 + 𝑟) ∈ ℝ → (𝑦 + 𝑟) ∈
ℝ*) |
| 11 | | ioof 12271 |
. . . . . . . . . . . 12
⊢
(,):(ℝ* × ℝ*)⟶𝒫
ℝ |
| 12 | | ffn 6045 |
. . . . . . . . . . . 12
⊢
((,):(ℝ* × ℝ*)⟶𝒫
ℝ → (,) Fn (ℝ* ×
ℝ*)) |
| 13 | 11, 12 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (,) Fn
(ℝ* × ℝ*) |
| 14 | | fnovrn 6809 |
. . . . . . . . . . 11
⊢ (((,) Fn
(ℝ* × ℝ*) ∧ (𝑦 − 𝑟) ∈ ℝ* ∧ (𝑦 + 𝑟) ∈ ℝ*) → ((𝑦 − 𝑟)(,)(𝑦 + 𝑟)) ∈ ran (,)) |
| 15 | 13, 14 | mp3an1 1411 |
. . . . . . . . . 10
⊢ (((𝑦 − 𝑟) ∈ ℝ* ∧ (𝑦 + 𝑟) ∈ ℝ*) → ((𝑦 − 𝑟)(,)(𝑦 + 𝑟)) ∈ ran (,)) |
| 16 | 9, 10, 15 | syl2an 494 |
. . . . . . . . 9
⊢ (((𝑦 − 𝑟) ∈ ℝ ∧ (𝑦 + 𝑟) ∈ ℝ) → ((𝑦 − 𝑟)(,)(𝑦 + 𝑟)) ∈ ran (,)) |
| 17 | 7, 8, 16 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝑦 − 𝑟)(,)(𝑦 + 𝑟)) ∈ ran (,)) |
| 18 | 6, 17 | eqeltrd 2701 |
. . . . . . 7
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,)) |
| 19 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑟 = +∞ → (𝑦(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)+∞)) |
| 20 | 1 | remet 22593 |
. . . . . . . . . 10
⊢ 𝐷 ∈
(Met‘ℝ) |
| 21 | | blpnf 22202 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (Met‘ℝ)
∧ 𝑦 ∈ ℝ)
→ (𝑦(ball‘𝐷)+∞) =
ℝ) |
| 22 | 20, 21 | mpan 706 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ → (𝑦(ball‘𝐷)+∞) = ℝ) |
| 23 | 19, 22 | sylan9eqr 2678 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 = +∞) → (𝑦(ball‘𝐷)𝑟) = ℝ) |
| 24 | | ioomax 12248 |
. . . . . . . . 9
⊢
(-∞(,)+∞) = ℝ |
| 25 | | ioorebas 12275 |
. . . . . . . . 9
⊢
(-∞(,)+∞) ∈ ran (,) |
| 26 | 24, 25 | eqeltrri 2698 |
. . . . . . . 8
⊢ ℝ
∈ ran (,) |
| 27 | 23, 26 | syl6eqel 2709 |
. . . . . . 7
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 = +∞) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,)) |
| 28 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑟 = -∞ → (𝑦(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)-∞)) |
| 29 | | 0xr 10086 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ* |
| 30 | | nltmnf 11963 |
. . . . . . . . . . 11
⊢ (0 ∈
ℝ* → ¬ 0 < -∞) |
| 31 | 29, 30 | ax-mp 5 |
. . . . . . . . . 10
⊢ ¬ 0
< -∞ |
| 32 | | mnfxr 10096 |
. . . . . . . . . . . 12
⊢ -∞
∈ ℝ* |
| 33 | | xbln0 22219 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈
(∞Met‘ℝ) ∧ 𝑦 ∈ ℝ ∧ -∞ ∈
ℝ*) → ((𝑦(ball‘𝐷)-∞) ≠ ∅ ↔ 0 <
-∞)) |
| 34 | 2, 32, 33 | mp3an13 1415 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℝ → ((𝑦(ball‘𝐷)-∞) ≠ ∅ ↔ 0 <
-∞)) |
| 35 | 34 | necon1bbid 2833 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℝ → (¬ 0
< -∞ ↔ (𝑦(ball‘𝐷)-∞) = ∅)) |
| 36 | 31, 35 | mpbii 223 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ → (𝑦(ball‘𝐷)-∞) = ∅) |
| 37 | 28, 36 | sylan9eqr 2678 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 = -∞) → (𝑦(ball‘𝐷)𝑟) = ∅) |
| 38 | | iooid 12203 |
. . . . . . . . 9
⊢ (0(,)0) =
∅ |
| 39 | | ioorebas 12275 |
. . . . . . . . 9
⊢ (0(,)0)
∈ ran (,) |
| 40 | 38, 39 | eqeltrri 2698 |
. . . . . . . 8
⊢ ∅
∈ ran (,) |
| 41 | 37, 40 | syl6eqel 2709 |
. . . . . . 7
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 = -∞) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,)) |
| 42 | 18, 27, 41 | 3jaodan 1394 |
. . . . . 6
⊢ ((𝑦 ∈ ℝ ∧ (𝑟 ∈ ℝ ∨ 𝑟 = +∞ ∨ 𝑟 = -∞)) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,)) |
| 43 | 5, 42 | sylan2b 492 |
. . . . 5
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ*)
→ (𝑦(ball‘𝐷)𝑟) ∈ ran (,)) |
| 44 | | eleq1 2689 |
. . . . 5
⊢ (𝑧 = (𝑦(ball‘𝐷)𝑟) → (𝑧 ∈ ran (,) ↔ (𝑦(ball‘𝐷)𝑟) ∈ ran (,))) |
| 45 | 43, 44 | syl5ibrcom 237 |
. . . 4
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ*)
→ (𝑧 = (𝑦(ball‘𝐷)𝑟) → 𝑧 ∈ ran (,))) |
| 46 | 45 | rexlimivv 3036 |
. . 3
⊢
(∃𝑦 ∈
ℝ ∃𝑟 ∈
ℝ* 𝑧 =
(𝑦(ball‘𝐷)𝑟) → 𝑧 ∈ ran (,)) |
| 47 | 4, 46 | sylbi 207 |
. 2
⊢ (𝑧 ∈ ran (ball‘𝐷) → 𝑧 ∈ ran (,)) |
| 48 | 47 | ssriv 3607 |
1
⊢ ran
(ball‘𝐷) ⊆ ran
(,) |