MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfp1lem1 Structured version   Visualization version   Unicode version

Theorem cantnfp1lem1 8575
Description: Lemma for cantnfp1 8578. (Contributed by Mario Carneiro, 20-Jun-2015.) (Revised by AV, 30-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s  |-  S  =  dom  ( A CNF  B
)
cantnfs.a  |-  ( ph  ->  A  e.  On )
cantnfs.b  |-  ( ph  ->  B  e.  On )
cantnfp1.g  |-  ( ph  ->  G  e.  S )
cantnfp1.x  |-  ( ph  ->  X  e.  B )
cantnfp1.y  |-  ( ph  ->  Y  e.  A )
cantnfp1.s  |-  ( ph  ->  ( G supp  (/) )  C_  X )
cantnfp1.f  |-  F  =  ( t  e.  B  |->  if ( t  =  X ,  Y , 
( G `  t
) ) )
Assertion
Ref Expression
cantnfp1lem1  |-  ( ph  ->  F  e.  S )
Distinct variable groups:    t, B    t, A    t, S    t, G    ph, t    t, Y   
t, X
Allowed substitution hint:    F( t)

Proof of Theorem cantnfp1lem1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 cantnfp1.y . . . . 5  |-  ( ph  ->  Y  e.  A )
21adantr 481 . . . 4  |-  ( (
ph  /\  t  e.  B )  ->  Y  e.  A )
3 cantnfp1.g . . . . . . 7  |-  ( ph  ->  G  e.  S )
4 cantnfs.s . . . . . . . 8  |-  S  =  dom  ( A CNF  B
)
5 cantnfs.a . . . . . . . 8  |-  ( ph  ->  A  e.  On )
6 cantnfs.b . . . . . . . 8  |-  ( ph  ->  B  e.  On )
74, 5, 6cantnfs 8563 . . . . . . 7  |-  ( ph  ->  ( G  e.  S  <->  ( G : B --> A  /\  G finSupp 
(/) ) ) )
83, 7mpbid 222 . . . . . 6  |-  ( ph  ->  ( G : B --> A  /\  G finSupp  (/) ) )
98simpld 475 . . . . 5  |-  ( ph  ->  G : B --> A )
109ffvelrnda 6359 . . . 4  |-  ( (
ph  /\  t  e.  B )  ->  ( G `  t )  e.  A )
112, 10ifcld 4131 . . 3  |-  ( (
ph  /\  t  e.  B )  ->  if ( t  =  X ,  Y ,  ( G `  t ) )  e.  A )
12 cantnfp1.f . . 3  |-  F  =  ( t  e.  B  |->  if ( t  =  X ,  Y , 
( G `  t
) ) )
1311, 12fmptd 6385 . 2  |-  ( ph  ->  F : B --> A )
148simprd 479 . . . . . 6  |-  ( ph  ->  G finSupp  (/) )
1514fsuppimpd 8282 . . . . 5  |-  ( ph  ->  ( G supp  (/) )  e. 
Fin )
16 snfi 8038 . . . . 5  |-  { X }  e.  Fin
17 unfi 8227 . . . . 5  |-  ( ( ( G supp  (/) )  e. 
Fin  /\  { X }  e.  Fin )  ->  ( ( G supp  (/) )  u. 
{ X } )  e.  Fin )
1815, 16, 17sylancl 694 . . . 4  |-  ( ph  ->  ( ( G supp  (/) )  u. 
{ X } )  e.  Fin )
19 eldifi 3732 . . . . . . . 8  |-  ( k  e.  ( B  \ 
( ( G supp  (/) )  u. 
{ X } ) )  ->  k  e.  B )
2019adantl 482 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( B  \  (
( G supp  (/) )  u. 
{ X } ) ) )  ->  k  e.  B )
211adantr 481 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( B  \  (
( G supp  (/) )  u. 
{ X } ) ) )  ->  Y  e.  A )
22 fvex 6201 . . . . . . . 8  |-  ( G `
 k )  e. 
_V
23 ifexg 4157 . . . . . . . 8  |-  ( ( Y  e.  A  /\  ( G `  k )  e.  _V )  ->  if ( k  =  X ,  Y ,  ( G `  k ) )  e.  _V )
2421, 22, 23sylancl 694 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( B  \  (
( G supp  (/) )  u. 
{ X } ) ) )  ->  if ( k  =  X ,  Y ,  ( G `  k ) )  e.  _V )
25 eqeq1 2626 . . . . . . . . 9  |-  ( t  =  k  ->  (
t  =  X  <->  k  =  X ) )
26 fveq2 6191 . . . . . . . . 9  |-  ( t  =  k  ->  ( G `  t )  =  ( G `  k ) )
2725, 26ifbieq2d 4111 . . . . . . . 8  |-  ( t  =  k  ->  if ( t  =  X ,  Y ,  ( G `  t ) )  =  if ( k  =  X ,  Y ,  ( G `  k ) ) )
2827, 12fvmptg 6280 . . . . . . 7  |-  ( ( k  e.  B  /\  if ( k  =  X ,  Y ,  ( G `  k ) )  e.  _V )  ->  ( F `  k
)  =  if ( k  =  X ,  Y ,  ( G `  k ) ) )
2920, 24, 28syl2anc 693 . . . . . 6  |-  ( (
ph  /\  k  e.  ( B  \  (
( G supp  (/) )  u. 
{ X } ) ) )  ->  ( F `  k )  =  if ( k  =  X ,  Y , 
( G `  k
) ) )
30 eldifn 3733 . . . . . . . . 9  |-  ( k  e.  ( B  \ 
( ( G supp  (/) )  u. 
{ X } ) )  ->  -.  k  e.  ( ( G supp  (/) )  u. 
{ X } ) )
3130adantl 482 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( B  \  (
( G supp  (/) )  u. 
{ X } ) ) )  ->  -.  k  e.  ( ( G supp 
(/) )  u.  { X } ) )
32 velsn 4193 . . . . . . . . 9  |-  ( k  e.  { X }  <->  k  =  X )
33 elun2 3781 . . . . . . . . 9  |-  ( k  e.  { X }  ->  k  e.  ( ( G supp  (/) )  u.  { X } ) )
3432, 33sylbir 225 . . . . . . . 8  |-  ( k  =  X  ->  k  e.  ( ( G supp  (/) )  u. 
{ X } ) )
3531, 34nsyl 135 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( B  \  (
( G supp  (/) )  u. 
{ X } ) ) )  ->  -.  k  =  X )
3635iffalsed 4097 . . . . . 6  |-  ( (
ph  /\  k  e.  ( B  \  (
( G supp  (/) )  u. 
{ X } ) ) )  ->  if ( k  =  X ,  Y ,  ( G `  k ) )  =  ( G `
 k ) )
37 ssun1 3776 . . . . . . . . 9  |-  ( G supp  (/) )  C_  ( ( G supp  (/) )  u.  { X } )
38 sscon 3744 . . . . . . . . 9  |-  ( ( G supp  (/) )  C_  (
( G supp  (/) )  u. 
{ X } )  ->  ( B  \ 
( ( G supp  (/) )  u. 
{ X } ) )  C_  ( B  \  ( G supp  (/) ) ) )
3937, 38ax-mp 5 . . . . . . . 8  |-  ( B 
\  ( ( G supp  (/) )  u.  { X } ) )  C_  ( B  \  ( G supp 
(/) ) )
4039sseli 3599 . . . . . . 7  |-  ( k  e.  ( B  \ 
( ( G supp  (/) )  u. 
{ X } ) )  ->  k  e.  ( B  \  ( G supp 
(/) ) ) )
41 eqid 2622 . . . . . . . . 9  |-  ( G supp  (/) )  =  ( G supp 
(/) )
42 eqimss2 3658 . . . . . . . . 9  |-  ( ( G supp  (/) )  =  ( G supp  (/) )  ->  ( G supp 
(/) )  C_  ( G supp 
(/) ) )
4341, 42mp1i 13 . . . . . . . 8  |-  ( ph  ->  ( G supp  (/) )  C_  ( G supp  (/) ) )
44 0ex 4790 . . . . . . . . 9  |-  (/)  e.  _V
4544a1i 11 . . . . . . . 8  |-  ( ph  -> 
(/)  e.  _V )
469, 43, 6, 45suppssr 7326 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( B  \  ( G supp 
(/) ) ) )  ->  ( G `  k )  =  (/) )
4740, 46sylan2 491 . . . . . 6  |-  ( (
ph  /\  k  e.  ( B  \  (
( G supp  (/) )  u. 
{ X } ) ) )  ->  ( G `  k )  =  (/) )
4829, 36, 473eqtrd 2660 . . . . 5  |-  ( (
ph  /\  k  e.  ( B  \  (
( G supp  (/) )  u. 
{ X } ) ) )  ->  ( F `  k )  =  (/) )
4913, 48suppss 7325 . . . 4  |-  ( ph  ->  ( F supp  (/) )  C_  ( ( G supp  (/) )  u. 
{ X } ) )
50 ssfi 8180 . . . 4  |-  ( ( ( ( G supp  (/) )  u. 
{ X } )  e.  Fin  /\  ( F supp 
(/) )  C_  (
( G supp  (/) )  u. 
{ X } ) )  ->  ( F supp  (/) )  e.  Fin )
5118, 49, 50syl2anc 693 . . 3  |-  ( ph  ->  ( F supp  (/) )  e. 
Fin )
5212funmpt2 5927 . . . . 5  |-  Fun  F
5352a1i 11 . . . 4  |-  ( ph  ->  Fun  F )
54 mptexg 6484 . . . . . 6  |-  ( B  e.  On  ->  (
t  e.  B  |->  if ( t  =  X ,  Y ,  ( G `  t ) ) )  e.  _V )
5512, 54syl5eqel 2705 . . . . 5  |-  ( B  e.  On  ->  F  e.  _V )
566, 55syl 17 . . . 4  |-  ( ph  ->  F  e.  _V )
57 funisfsupp 8280 . . . 4  |-  ( ( Fun  F  /\  F  e.  _V  /\  (/)  e.  _V )  ->  ( F finSupp  (/)  <->  ( F supp  (/) )  e.  Fin )
)
5853, 56, 45, 57syl3anc 1326 . . 3  |-  ( ph  ->  ( F finSupp  (/)  <->  ( F supp  (/) )  e.  Fin )
)
5951, 58mpbird 247 . 2  |-  ( ph  ->  F finSupp  (/) )
604, 5, 6cantnfs 8563 . 2  |-  ( ph  ->  ( F  e.  S  <->  ( F : B --> A  /\  F finSupp 
(/) ) ) )
6113, 59, 60mpbir2and 957 1  |-  ( ph  ->  F  e.  S )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   Oncon0 5723   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   supp csupp 7295   Fincfn 7955   finSupp cfsupp 8275   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-fsupp 8276  df-cnf 8559
This theorem is referenced by:  cantnfp1lem2  8576  cantnfp1lem3  8577  cantnfp1  8578
  Copyright terms: Public domain W3C validator