MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgr Structured version   Visualization version   GIF version

Theorem caucvgr 14406
Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Revised by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvgr.1 (𝜑𝐴 ⊆ ℝ)
caucvgr.2 (𝜑𝐹:𝐴⟶ℂ)
caucvgr.3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
caucvgr.4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
Assertion
Ref Expression
caucvgr (𝜑𝐹 ∈ dom ⇝𝑟 )
Distinct variable groups:   𝑗,𝑘,𝑥,𝐴   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥

Proof of Theorem caucvgr
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 caucvgr.2 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
21feqmptd 6249 . . . 4 (𝜑𝐹 = (𝑛𝐴 ↦ (𝐹𝑛)))
31ffvelrnda 6359 . . . . . 6 ((𝜑𝑛𝐴) → (𝐹𝑛) ∈ ℂ)
43replimd 13937 . . . . 5 ((𝜑𝑛𝐴) → (𝐹𝑛) = ((ℜ‘(𝐹𝑛)) + (i · (ℑ‘(𝐹𝑛)))))
54mpteq2dva 4744 . . . 4 (𝜑 → (𝑛𝐴 ↦ (𝐹𝑛)) = (𝑛𝐴 ↦ ((ℜ‘(𝐹𝑛)) + (i · (ℑ‘(𝐹𝑛))))))
62, 5eqtrd 2656 . . 3 (𝜑𝐹 = (𝑛𝐴 ↦ ((ℜ‘(𝐹𝑛)) + (i · (ℑ‘(𝐹𝑛))))))
7 fvexd 6203 . . . 4 ((𝜑𝑛𝐴) → (ℜ‘(𝐹𝑛)) ∈ V)
8 ovexd 6680 . . . 4 ((𝜑𝑛𝐴) → (i · (ℑ‘(𝐹𝑛))) ∈ V)
9 caucvgr.1 . . . . 5 (𝜑𝐴 ⊆ ℝ)
10 caucvgr.3 . . . . 5 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
11 caucvgr.4 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
12 ref 13852 . . . . 5 ℜ:ℂ⟶ℝ
13 resub 13867 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (ℜ‘((𝐹𝑘) − (𝐹𝑗))) = ((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑗))))
1413fveq2d 6195 . . . . . 6 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑗)))) = (abs‘((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑗)))))
15 subcl 10280 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → ((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ)
16 absrele 14048 . . . . . . 7 (((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
1715, 16syl 17 . . . . . 6 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
1814, 17eqbrtrrd 4677 . . . . 5 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
199, 1, 10, 11, 12, 18caucvgrlem2 14405 . . . 4 (𝜑 → (𝑛𝐴 ↦ (ℜ‘(𝐹𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(ℜ ∘ 𝐹)))
20 ax-icn 9995 . . . . . . 7 i ∈ ℂ
2120elexi 3213 . . . . . 6 i ∈ V
2221a1i 11 . . . . 5 ((𝜑𝑛𝐴) → i ∈ V)
23 fvexd 6203 . . . . 5 ((𝜑𝑛𝐴) → (ℑ‘(𝐹𝑛)) ∈ V)
24 rlimconst 14275 . . . . . 6 ((𝐴 ⊆ ℝ ∧ i ∈ ℂ) → (𝑛𝐴 ↦ i) ⇝𝑟 i)
259, 20, 24sylancl 694 . . . . 5 (𝜑 → (𝑛𝐴 ↦ i) ⇝𝑟 i)
26 imf 13853 . . . . . 6 ℑ:ℂ⟶ℝ
27 imsub 13875 . . . . . . . 8 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (ℑ‘((𝐹𝑘) − (𝐹𝑗))) = ((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑗))))
2827fveq2d 6195 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑗)))) = (abs‘((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑗)))))
29 absimle 14049 . . . . . . . 8 (((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
3015, 29syl 17 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
3128, 30eqbrtrrd 4677 . . . . . 6 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
329, 1, 10, 11, 26, 31caucvgrlem2 14405 . . . . 5 (𝜑 → (𝑛𝐴 ↦ (ℑ‘(𝐹𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))
3322, 23, 25, 32rlimmul 14375 . . . 4 (𝜑 → (𝑛𝐴 ↦ (i · (ℑ‘(𝐹𝑛)))) ⇝𝑟 (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹))))
347, 8, 19, 33rlimadd 14373 . . 3 (𝜑 → (𝑛𝐴 ↦ ((ℜ‘(𝐹𝑛)) + (i · (ℑ‘(𝐹𝑛))))) ⇝𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))))
356, 34eqbrtrd 4675 . 2 (𝜑𝐹𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))))
36 rlimrel 14224 . . 3 Rel ⇝𝑟
3736releldmi 5362 . 2 (𝐹𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))) → 𝐹 ∈ dom ⇝𝑟 )
3835, 37syl 17 1 (𝜑𝐹 ∈ dom ⇝𝑟 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574   class class class wbr 4653  cmpt 4729  dom cdm 5114  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  supcsup 8346  cc 9934  cr 9935  ici 9938   + caddc 9939   · cmul 9941  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075  cmin 10266  +crp 11832  cre 13837  cim 13838  abscabs 13974  𝑟 crli 14216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-rlim 14220
This theorem is referenced by:  caucvg  14409  dvfsumrlim  23794
  Copyright terms: Public domain W3C validator